
HIGHER TECHNICAL FEDERAL TEACHING INSTITUTE Vienna 16
Department of Information Technology

DIPLOMA THESIS

LinkWave

Carried out in the school year 2023/24

Arshia Reisi (5CHITN) Supervisor: ***

Jan Schäfer (5AHITN) Supervisor: ***

Ruben Zukić (5AHITN) Supervisor: ***

Declaration of Independence

We declare that we have written the present diploma thesis independently and without

external assistance, have not used any sources or aids other than those specified, and

have identified passages taken literally or in substance from the sources used.

Vienna, on 04.06.2024 Authors:

Ruben Zukić

Jan Schäfer

Arshia Reisi

- ii -

Documentation of the Diploma Thesis

Authors Arshia Reisi

Jan Schäfer

Ruben Zukić

Class / School Year *** / 2023-24

Topic Development of a cross-platform application to

optimize data and information transfer between

devices with different operating systems

Submission Note Date: Received by:

04.06.2024 ***

Approval Date: Examiner:

10.06.2024 ***

Date: Department Head:

10.06.2024 ***

- iii -

- iv -

Abstract

Have you heard about AirDrop? AirDrop is a feature of Apple operating systems that

makes it possible to share data quickly and easily between Apple devices. Pictures and

files can be sent to other devices at the touch of a button, and even the clipboard of your

own devices is synchronized in the background.

LinkWave takes this functionality from Apple devices and extends it to an operating

system-independent level. LinkWave is an innovative software solution that enables

AirDrop-like connectivity across a wide range of platforms, including Windows, Android,

and Apple devices themselves. The application enables the seamless sharing of files,

images, and clipboard content across different operating systems without users having

to worry about device compatibility.

- v -

CONTENTS

Contents

Declaration of Independence ii

Documentation of the Diploma Thesis iii

Abstract v

1 Introduction 2

1.1 Problem Statement . 3

1.2 Solution . 5

2 Functionality 6

2.1 Functions . 7

2.2 Functionality on Different Operating Systems 8

3 Applications 10

3.1 iOS . 12

3.2 macOS . 14

3.3 Android . 16

3.4 Windows . 19

3.5 Web - Dashboard . 22

4 Architecture 24

4.1 Selected Technologies . 25

4.1.1 WinUI . 25

4.1.2 Windows App SDK . 26

4.1.3 SwiftUI . 27

4.1.4 Jetpack Compose . 29

4.1.5 SvelteKit . 30

4.1.6 GraphQL . 31

4.1.7 Bonjour . 34

4.2 Network Architecture . 36

- vi -

CONTENTS

4.3 Software Architecture . 37

4.3.1 iOS . 37

4.3.2 macOS . 39

4.3.3 Android . 41

4.3.4 Windows . 49

4.3.5 Server . 55

5 Implementation of Features 60

5.1 Device Discovery . 61

5.1.1 Functionality . 62

5.1.2 On iOS and macOS . 64

5.1.3 On Android . 68

5.1.4 On Windows . 75

5.1.5 On the Server . 77

5.2 File Transfer . 81

5.2.1 Functionality . 82

5.2.2 On iOS and macOS . 84

5.2.3 On Android . 87

5.2.4 On Windows . 97

5.3 Clipboard . 103

5.3.1 Functionality . 104

5.3.2 On iOS and macOS . 106

5.3.3 On Android . 109

5.3.4 On Windows . 114

5.4 User Account . 118

5.4.1 Functionality . 119

5.4.2 On iOS and macOS . 129

5.4.3 On Android . 131

5.4.4 On Windows . 133

5.4.5 On the Web . 136

5.4.6 On the Server . 139

- vii -

CONTENTS

5.5 Background Execution . 143

5.5.1 On iOS . 144

5.5.2 On macOS . 144

5.5.3 On Android . 145

5.5.4 On Windows . 147

5.6 Encryption . 148

5.6.1 Functionality . 149

5.6.2 On iOS and macOS . 152

5.6.3 On Android . 155

5.6.4 On Windows . 158

5.6.5 On the Server . 160

6 Conclusion 162

List of Figures 164

List of Tables 165

Bibliography 165

- viii -

1 INTRODUCTION

1 Introduction

- 2 -

1 INTRODUCTION

The modern world’s workday is becoming faster, more mobile, and more digital. Thanks

to this development, it is now possible to work from anywhere in the world, at any time,

as desired. To experience this flexibility, devices such as computers, smartphones, and

tablets have become indispensable tools for everyday work. They allow important data

and information to be accessed, edited, and shared anytime and anywhere.

1.1 Problem Statement

Many people now use multiple devices to complete their work—often utilizing devices

from many different manufacturers. With the increasing use of various devices, it be-

comes more complicated to use them efficiently together.

Sharing data and information between devices, in particular, is often cumbersome

and time-consuming. To illustrate the specific problems that frequently arise, some

examples are given below:

• Cumbersome File Transfer: Transferring files between different devices, espe-

cially from different manufacturers, is cumbersome and time-consuming. For in-

stance, transferring a file from an iPhone to a Windows computer requires relying

on cloud services like Dropbox or Google Drive.

This involves multiple steps, such as signing up for a cloud service, uploading the

file via a web browser, signing in to the cloud service on the other device, and

downloading the file. Additionally, programs unrelated to file transfer may need

to be downloaded. As a result, file transfer is often so tedious that users avoid it

altogether and restrict themselves to one device.

- 3 - Ruben Zukić

1 INTRODUCTION

• Transferring Large Files: Especially in creative industries, large files like images,

videos, and music—often several GB in size—need to be exchanged between

different people and devices. Smaller teams and individuals often resort to cloud

services like Dropbox or Google Drive to share these files.

However, they are limited by internet speed and storage space. Additionally, files

must first be uploaded and then downloaded, doubling the strain on already limited

internet connections. Purchasing adequate storage from a cloud service becomes

a significant cost factor, particularly for smaller teams and individuals.

• Frequent File Transfers: Even with smaller files, frequent uploading and down-

loading via cloud services quickly becomes tedious with repetition.

This repetitive task can become so time-consuming that users limit their work to a

single device, reducing flexibility and forcing them to find workarounds.

• Transferring Text and Images: When using multiple devices for work, transfer-

ring text and images between them is often necessary. This often involves cumber-

some methods like emailing or sending text and images to oneself via messaging

services like WhatsApp or Signal.

For quick text transfers, such as weblinks, this is often too cumbersome. Even

slight delays in transferring such frequently used data can quickly become ex-

tremely annoying over time.

Ruben Zukić - 4 -

1 INTRODUCTION

Some manufacturers, like Apple, offer solutions within their ecosystem1 such as “Air-

drop” and “Universal Clipboard,” enabling seamless data sharing within their product

range. However, a similarly integrated solution that works independently of manufac-

turer and operating system is missing. This is where LinkWave steps in, aiming to close

this gap and provide a universal, user-friendly solution.

1.2 Solution

LinkWave aims to create an ecosystem experience across Mac, iPhone, Android, and

Windows devices. LinkWave can be installed as an app on these devices. The app au-

tomatically detects other nearby devices with LinkWave installed. All LinkWave features

can then be used between these devices.

1Ecosystem—in the context of technology, an ecosystem refers to the entirety of devices, software,

and services provided by a single manufacturer.

- 5 - Ruben Zukić

2 FUNCTIONALITY

2 Functionality

- 6 -

2 FUNCTIONALITY

2.1 Functions

LinkWave offers a variety of features that enable the exchange of data and informa-

tion between different devices. To provide a general overview of its functionality, the

LinkWave features are briefly presented below:

• Device Detection: LinkWave automatically detects other nearby devices that also

have LinkWave installed. For example, files can be transferred between a smart-

phone and a computer without manually establishing a connection.

• File Transfer: LinkWave allows files to be transferred between devices. It does

not matter whether the devices are from different manufacturers or use different

operating systems. The file transfer occurs via a direct connection between the

devices without requiring an internet connection.

• Clipboard Sharing: LinkWave enables sharing the clipboard contents between

devices. For instance, text or images copied on a smartphone can be pasted on

a computer. This occurs automatically when the devices are nearby. However, for

security reasons, it is only possible between devices logged in with the same user

account.

• User Account: LinkWave allows users to log in with an account. This synchro-

nizes the user’s settings and data across all devices. For instance, the clipboard

can be shared between devices logged in with the same user account.

• Background Execution: LinkWave can run in the background without the app

being open. For example, files can be transferred between devices while the app

runs in the background. Clipboard sharing is also possible in the background.

• Encryption: LinkWave encrypts all data transferred between communicating de-

vices. This ensures that only the user can view the data. Encryption occurs auto-

matically and is invisible to the user.

- 7 - Ruben Zukić

2 FUNCTIONALITY

2.2 Functionality on Different Operating Systems

LinkWave supports a variety of operating systems. However, due to limitations of operat-

ing systems and hardware, not all features are fully functional on all operating systems.

Table 1 lists the supported features on different operating systems and their limitations.

iOS ✓ ✓ ˜ ✓ ✗ ✓

macOS ✓ ✓ ✓ ✓ ✓ ✓

Android ✓ ✓ ˜ ✓ ✓ ✓

Windows ✓ ✓ ✓ ✓ ✓ ✓

De
vic

e
De

te
ct

io
n

Fi
le

Tr
an

sfe
r

Cl
ip

bo
ar

d
Sh

ar
in

g

Us
er

Ac
co

un
t

Ba
ck

gr
ou

nd
Ex

ec
ut

io
n

En
cr

yp
tio

n

✓ – Fully supported, ˜ – Partially supported, ✗ – Not supported

Table 1: Supported Features on Different Operating Systems

The specific limitations and implementations on different operating systems are de-

scribed in Chapter 5 “Implementation of Features” starting on page 61 and in the corre-

sponding subchapters for the individual features.

Ruben Zukić - 8 -

3 APPLICATIONS

3 Applications

- 10 -

3 APPLICATIONS

The functions of LinkWave are provided in the form of apps on various operating sys-

tems. On each supported operating system, the app was developed in a native pro-

gramming language to ensure the best possible integration. The apps are available for

download on the LinkWave website at linkwave.org.

- 11 - Ruben Zukić

linkwave.org

3 APPLICATIONS

3.1 iOS

On iOS devices, the LinkWave app was developed in the Swift programming language.

The UI was created using the SwiftUI framework. Swift and SwiftUI were developed by

Apple and make it easy to create an interface that meets Apple’s criteria. The app is

available for iOS 17 and later.

To make it as easy as possible for users to use LinkWave, the iOS app offers various

ways to use LinkWave. The implemented options are:

• The LinkWave App: In the app, users can use file transfer and adjust the app’s

settings. Additionally, users can log in to their LinkWave account in the app to

unlock more features.

Figure 1: iOS LinkWave App

Ruben Zukić - 12 -

3 APPLICATIONS

• The “Share” Window: iOS has a “Share” feature. This function allows users

to share files, texts, and images from one app to another. Users only need to

press the share icon in an app and choose from a selection of apps to share the

content. LinkWave is one of these apps. This means users don’t need to open the

LinkWave app to share files. They simply press the share icon in another app and

select LinkWave. From there, files can be sent directly to other devices, and texts

can be copied directly to the clipboard of another device.

(a) iOS Share Selection (b) iOS LinkWave Share

Window

Figure 2: iOS Share Extension

- 13 - Ruben Zukić

3 APPLICATIONS

3.2 macOS

On macOS devices, the LinkWave app was also developed in the Swift programming

language. The UI was also created using the SwiftUI framework. The app is available

for macOS 14 and later.

Like the iOS app, the macOS app offers various ways to use LinkWave. However,

due to more development possibilities on macOS, these features are much more exten-

sive. The implemented features are:

• The LinkWave App: In the app, users can use file transfer and adjust the app’s

settings, just like on iOS. Users can also log in to their LinkWave account to unlock

additional features. Additionally, a list of all nearby devices using LinkWave is

available.

Figure 3: macOS LinkWave App

Ruben Zukić - 14 -

3 APPLICATIONS

• The “Share” Window: macOS also has a “Share” feature. This works identically

to the one on iOS. However, sharing text to the clipboard of another device is not

possible on macOS. This is because the clipboard on macOS can be used directly

and does not require a feature like on iOS.

(a) macOS Share Selection (b) macOS LinkWave Share Window

Figure 4: macOS Share Extension

• The Menu Bar Icon: On macOS, there is a menu bar. In this menu bar, the icons

of apps running in the background are displayed. LinkWave also has such an icon.

Through this icon, users can open the LinkWave app and its settings. Users can

view a list of devices connected to their account and access their settings directly.

LinkWave can also be completely exited directly from here, so it no longer runs in

the background.

Figure 5: macOS Menu Bar Icon

• The Clipboard: On macOS, as with any modern operating system, there is a clip-

board. LinkWave automatically sends copied content to other devices connected

to the same account.

- 15 - Ruben Zukić

3 APPLICATIONS

3.3 Android

The LinkWave app for Android was developed in the Kotlin programming language. The

UI was created using the Jetpack Compose framework. The app is available for Android

12 and later.

The Android app consists of three parts:

• The LinkWave App: The LinkWave app refers to the main application, the one

that opens when you tap the app icon. In this app, users can adjust settings such

as the visibility of their device and log in or out.

Figure 6: Android LinkWave App

Jan Schäfer - 16 -

3 APPLICATIONS

• The “Share” Window: Android also has a “Share” feature. This feature works

almost identically to the one on iOS. Images and files can be sent to the LinkWave

app from other apps. To share an image or file, users simply need to tap the share

icon in an app and then select the LinkWave app. This functionality is modeled

after Android’s native “Quick-Share” and Apple’s “AirDrop.”

(a) Android Share Selection (b) Android LinkWave Share

Window

Figure 7: Android Share Extension

- 17 - Jan Schäfer

3 APPLICATIONS

• The Clipboard: Since Android 10, an app can only read from the clipboard when

it is in the foreground. However, if text is selected, it can be sent to an app. To

do this, users need to tap the three dots in the “Selection Menu” and then select

the LinkWave app. The text is then sent to the LinkWave app, which forwards it to

other devices. Figure 8 shows the Selection Menu.

Figure 8: Selection Menu

Jan Schäfer - 18 -

3 APPLICATIONS

3.4 Windows

The LinkWave app for Windows was developed in the C# programming language. The

UI was created using the WinUI framework. The app is available for Windows 10 and

later.

The Windows app offers similar usage options as the macOS app. The implemented

features are:

• The LinkWave App: In the app, users can use file transfer and adjust the app’s

settings, just like on macOS and iOS. Users can also log in to their LinkWave

account to unlock additional features. As on macOS, a device overview can also

be accessed.

Figure 9: Windows LinkWave App

- 19 - Ruben Zukić

3 APPLICATIONS

• The “Share” Window: Windows also has a “Share” feature. This feature works

similarly to the one on macOS.

Figure 10: Windows Share in Explorer

(a) Windows Share Selection (b) LinkWave Share Window

Figure 11: Windows Share Window

Users need to press the share icon in an app and will see a selection of apps to

share the content with (see Figure 11 (a)). LinkWave is one of these apps. When

selecting LinkWave, the LinkWave Share Window opens (see Figure 11 (b)). Here,

users can choose which device to send the content to.

• The System Tray2 Icon: Windows has a system tray. In this system tray, the
2The system tray is an area in the Windows taskbar where icons of apps running in the background

Ruben Zukić - 20 -

3 APPLICATIONS

icons of apps running in the background are displayed. LinkWave also has such

an icon (see Figure 12). Through this icon, users can open the LinkWave app or

completely exit it so that it no longer runs in the background.

Figure 12: Windows System Tray Icon

Figure 13: Windows System Tray Menu

• The Clipboard: As with any modern operating system, Windows also has a clip-

board. LinkWave automatically sends copied content to other devices connected

to the same account.

are displayed. It is located on the right side of the taskbar, identified by the ∧ symbol.

- 21 - Ruben Zukić

3 APPLICATIONS

3.5 Web - Dashboard

The LinkWave Dashboard is a web application that allows users to manage their devices

and general account-related settings. The dashboard was developed with SvelteKit and

is available via browser on all devices. The web application is intended for managing

one’s account and devices. Users can view their devices and delete them if necessary.

Account-related settings include options such as changing the password or deleting the

account. The elements of the website were taken from the shadcn/ui UI library. The

dashboard is accessible at account.linkwave.org.

Figure 14: LinkWave Dashboard

Jan Schäfer - 22 -

account.linkwave.org

4 ARCHITECTURE

4 Architecture

- 24 -

4 ARCHITECTURE

4.1 Selected Technologies

This section provides a detailed explanation of some key technologies and the reasons

for their selection.

4.1.1 WinUI

Figure 15: WinUI Logo

What is WinUI?

WinUI is a UI library developed by Microsoft for creating modern user interfaces for

Windows applications. These user interfaces use the same elements as Microsoft’s

system applications. [1] This design language is referred to by Microsoft as “Fluent

Design.” WinUI version 3 provides the elements from Windows 11 system applications,

but they can also be used on older Windows versions (up to Windows 10). On these

older versions, apps still appear as they do on Windows 11. The “Windows App SDK”

allows developers to use these elements in their applications with C# and XAML. The

“Windows App SDK” is described in more detail starting on page 26.

How is WinUI different from alternatives like MAUI?

.NET MAUI allows for creating similar user interfaces to WinUI. However, MAUI differs

from WinUI in some respects. MAUI is a cross-platform UI library that enables the

development of user interfaces for Windows, macOS, iOS, and Android. WinUI, on the

other hand, is only available for Windows. Because MAUI must function across multiple

operating systems, writing code that deeply integrates with the operating system is more

difficult. WinUI, being built exclusively for Windows, does not have this limitation.

- 25 - Ruben Zukić

4 ARCHITECTURE

What was WinUI used for?

WinUI was used for developing the LinkWave app for Windows. The app was written in

C# and XAML, which suited the needs of LinkWave.

4.1.2 Windows App SDK

What is the Windows App SDK?

“SDK” translates to software development kit. An SDK is a collection of tools that en-

ables developers to create software for a specific platform. The “Windows App SDK”

is an SDK from Microsoft that allows for the development of Windows applications. It

helps create modern Windows apps using various UI libraries. For example, an app

developed with the “Windows App SDK” could use either MAUI or WinUI.

The “Windows App SDK” also simplifies accessing Windows features. For instance,

it allows easy access to the clipboard or displaying notifications.

How is the Windows App SDK different from other SDKs like UWP?

The “Windows App SDK” is an evolution of UWP, an older SDK from Microsoft serv-

ing a similar purpose. However, UWP is only available for Windows 10, whereas the

“Windows App SDK” supports Windows 10 and later versions. It also enables the de-

velopment of apps for Windows 11. Unfortunately, the “Windows App SDK” does not

support some features that UWP does, such as easy integration of Google account

sign-ins. Nevertheless, it makes sense to choose the “Windows App SDK” because

UWP is already marked as “deprecated” by Microsoft and, unlike the “Windows App

SDK,” no longer receives updates.

What was the Windows App SDK used for?

The “Windows App SDK” was used for developing the LinkWave app for Windows. The

app was written in C# and XAML. With the “Windows App SDK,” it was possible to de-

velop the app to function on Windows 10 and later while supporting the latest Windows

11 features. It also significantly simplified tasks like accessing the clipboard or sending

notifications.

Ruben Zukić - 26 -

4 ARCHITECTURE

4.1.3 SwiftUI

Figure 16: SwiftUI Logo

What is SwiftUI?

SwiftUI is a framework developed by Apple for creating user interfaces for macOS (e.g.,

MacBooks) and iOS (e.g., iPhones). With SwiftUI, developers can use the same ele-

ments that Apple uses in its system applications.

How is SwiftUI different from alternatives like UIKit?

SwiftUI is a simpler and more modern version of UIKit. SwiftUI is declarative, meaning

developers only need to describe how the user interface should look, not how it should

be built. This makes creating user interfaces easier. SwiftUI is also easier for beginners

to learn because it requires less code for the same functionality. An example of the

difference between SwiftUI and UIKit can be seen in the code for a simple UI element:

SwiftUI enables faster development of user interfaces thanks to shorter and simpler

code.

What was SwiftUI used for?

SwiftUI was used for developing the LinkWave app for macOS and iOS. The app utilizes

special Apple elements, making it look and function as though it is an integral part of

macOS and iOS themselves.

- 27 - Ruben Zukić

4 ARCHITECTURE

class ViewController:

UIViewController {

override func viewDidLoad () {

super.viewDidLoad ()

let label = UILabel ()

label.text = "Hello ,␣UIKit!"

label.font = UIFont

.systemFont(ofSize: 36)

label.textColor = .blue

view.addSubview(label)

}

}

UIKit Example

struct ContentView: View {

var body: some View {

Text("Hello ,␣SwiftUI!")

.font(. largeTitle)

.foregroundColor (.blue)

}

}

SwiftUI Example

Ruben Zukić - 28 -

4 ARCHITECTURE

4.1.4 Jetpack Compose

Figure 17: Jetpack Compose Logo

Jetpack Compose is Google’s recommended toolkit for building native user inter-

faces on Android, emphasizing a declarative approach to UI development. Unlike the

traditional separation of XML layouts and Kotlin/Java code, Compose allows developers

to programmatically create entire UIs using Kotlin. It simplifies and accelerates UI de-

velopment on Android with less code, powerful tools, and intuitive Kotlin APIs. Kotlin,

developed by JetBrains, is a programming language fully interoperable with Java. Many

Android APIs, including the one used by LinkWave for the Network Service Discovery

Protocol (see Chapter 5.1.3), are provided via Java code. Kotlin’s interoperability with

Java makes it possible to access these APIs from Jetpack Compose.

User Interface Unlike in WinUI or on the web, the user interface is not defined in a

markup language such as XAML or HTML, but dynamically generated in code using so-

called @Composable functions. Google provides a library of Composables corresponding

to the “Material Design 3” design language used in Android system applications. The

following example demonstrates how a simple component is constructed:

@Composable

fun Greeting(name: String) {

Text(text = "Hello␣$name!")

}

The Greeting function defines a Text element displaying the text "Hello" and the pro-

vided name.

- 29 - Jan Schäfer

4 ARCHITECTURE

Why was Jetpack Compose selected?

Jetpack Compose was used to develop the LinkWave app for Android. It utilizes Google’s

specific components, making it look and function as though it is a native part of Android

itself. Unlike other technologies such as React Native or Flutter, which use an ab-

straction layer to communicate with Android, Jetpack Compose interacts directly with

Android. This helps seamlessly integrate the app into the operating system.

4.1.5 SvelteKit

Figure 18: Svelte Logo

SvelteKit is a modern framework for developing web applications, built on the Svelte

library. SvelteKit simplifies the development process by providing a structured envi-

ronment for creating fast and reactive Single-Page Applications (SPAs) or Server-Side

Rendered (SSR) applications. Unlike traditional frameworks, where most work is done

in the user’s browser, Svelte compiles code into highly optimized, imperative JavaScript

during the build process, resulting in significant performance improvements. SvelteKit

offers out-of-the-box support for routing, data prefetching, and seamless integration with

various backend systems, enabling developers to focus on feature development rather

than boilerplate code.

What was SvelteKit used for?

SvelteKit was used to develop the LinkWave Dashboard. The dashboard is a web ap-

plication allowing users to manage their devices and change general account-related

settings.

Arshia Reisi - 30 -

4 ARCHITECTURE

4.1.6 GraphQL

GraphQL is a query language for APIs, where an API (Application Programming Inter-

face) is an interface allowing different software applications to interact and exchange

functions or data. With GraphQL, developers define a schema that describes all avail-

able data and how to access it. Clients can specify in a single request exactly which data

they need. The server interprets this request, retrieves the required data, and returns it

in the format defined by the query. GraphQL views the information being queried as a

connected system of nodes and edges, enabling the construction of deeply nested and

complex queries. This approach allows targeted and efficient data retrieval tailored to

the clients’ needs.

Figure 19: GraphQL Logo

- 31 - Arshia Reisi

4 ARCHITECTURE

Advantages of GraphQL:

• Precise Data Requirements: Allows users to request exactly the data they need

through a single, unified interface.

• Strongly Typed Schema: Ensures precise validation and supports clear docu-

mentation through a strongly typed schema.

• Improved Development: Provides introspection capabilities that simplify frontend

application development.

• Minimized Data Transfer: Reduces the amount of data transferred, which im-

proves performance, particularly on mobile platforms.

• Reduced Network Requests: Decreases the need for multiple network requests,

thereby improving the overall performance of the application.

Disadvantages of GraphQL:

• Higher Query Complexity: For new developers, learning GraphQL can be more

challenging than REST due to its complexity and flexibility.

• Caching Challenges: Implementing client-side caching is more complicated be-

cause GraphQL queries are often specific and less predictable than REST queries.

• Rate Limiting and Monitoring: Monitoring and limiting query rates can be more

difficult due to the variable nature of GraphQL queries.

• Performance for Large Queries: Large and complex queries can impact perfor-

mance by consuming significant resources at once.

Arshia Reisi - 32 -

4 ARCHITECTURE

Advantages of REST APIs:

• Simplicity and Understandability: REST APIs follow a standardized approach

with clear conventions, making it easier for developers to work with REST.

• Wide Support: REST is natively supported on many platforms and languages,

simplifying integration into existing systems.

• Efficient Caching: REST enables effective caching of requests, reducing network

load and server requests.

• Statelessness: Each client-to-server request is independent and contains all the

information the server needs to respond.

Disadvantages of REST APIs:

• Overfetching and Underfetching: REST APIs can result in delivering too much

or too little data, leading to inefficient requests.

• Multiple Endpoints: The need to define separate endpoints for various data re-

sources can increase complexity.

• Rigid Structures: The rigid structures of REST can complicate the development

of dynamic applications with flexible data requirements.

• Challenges with Data Aggregation: Merging data from different sources or end-

points can require additional requests and complexity.

- 33 - Arshia Reisi

4 ARCHITECTURE

4.1.7 Bonjour

The integration of Bonjour in LinkWave facilitates networking in an efficient and user-

oriented manner. Thanks to Bonjour, LinkWave can quickly identify other devices equipped

with LinkWave on the network.

Figure 20: Bonjour Logo

What is Bonjour?

The Bonjour protocol, also known as Zero Configuration Networking (Zeroconf), is a

technology developed by Apple. Bonjour allows devices to recognize each other within

a local network without requiring manual network configuration. The protocol is not only

used by Apple operating systems but also by many other operating systems. [17]

Ruben Zukić - 34 -

4 ARCHITECTURE

How does Bonjour work?

Using Multicast DNS (mDNS), Bonjour provides a platform for devices to independently

publish and discover their services within a local network. This technology is highly

compatible across various operating systems, which is one of the main reasons why

LinkWave uses Bonjour to locate other devices in a local network.

Service Discovery The Bonjour protocol utilizes Multicast DNS (mDNS), a method

for discovering network services that fundamentally differs from traditional DNS. Instead

of relying on centralized servers, mDNS allows devices and services to independently

publish and discover themselves within the local network. This is achieved by sending

requests to a specific multicast IP address, which is shared and monitored by all network

devices.

Name Resolution The Bonjour protocol simplifies name resolution within the net-

work. Remembering IP addresses is no longer necessary. This is achieved through the

use of Multicast DNS (mDNS), which automates the assignment of user-friendly names

to IP addresses within the local network. Devices send multicast requests to the address

224.0.0.251 for IPv4 or ff02::fb for IPv6 to resolve a device name or discover services.

Furthermore, this not only enables the identification of services on the network but also

provides additional metadata to support precise service identification.

- 35 - Ruben Zukić

4 ARCHITECTURE

Automatic Configuration By automating network configuration, Bonjour signifi-

cantly simplifies the setup of devices within the network. It manages IP address as-

signments via DHCP as well as in the APIPA range (169.254.x.x) if no DHCP server is

available.

Broad Compatibility Although developed by Apple, Bonjour supports a variety of

operating systems beyond macOS and iOS, including Windows (with Bonjour software

installed) and other systems that implement mDNS and DNS-SD. This underscores its

cross-platform applicability.

Zero-Configuration Networking (Zeroconf) The concept of “zero-configuration”

implies that devices function with minimal to no user intervention. This is particularly

advantageous for users without technical expertise or those who prefer not to configure

complicated settings.

4.2 Network Architecture

LinkWave uses a client-server model to receive and process requests. Communication

occurs via the TCP/IP protocol, which ensures secure and reliable data transmission.

The server acts as the receiver, processing the data requests sent by clients.

The security of the data is ensured by the SSL/TLS protocol, which enables en-

cryption and authentication of the communicating parties. At the beginning of each

connection, a handshake occurs, during which certificates and cryptographic keys are

exchanged to establish a secure connection. Incoming client requests are received by

the server via TCP listeners and internally forwarded to the corresponding services re-

sponsible for tasks such as file or clipboard sharing. This process is explained in the

following sections.

Ruben Zukić - 36 -

4 ARCHITECTURE

4.3 Software Architecture

4.3.1 iOS

The following section describes the software architecture of the iOS app for LinkWave.

The iOS app was written in Swift using SwiftUI and, like the Windows app (see Chapter

4.3.4), follows the MVVM (Model-View-ViewModel) architectural pattern.

iOS Core Concepts

Every iOS app consists of multiple extensions that work together to provide the app’s

functionality. Each extension has a specific purpose and is independent of the others.

Every iOS app has at least one main application that controls the app’s user interface

(see Chapter 3.1). Other extensions can either logically group code or provide functions

that work without the main application. The following extensions were used in the iOS

app for LinkWave:

• App (LinkWaveApp): The main application that controls the app’s user interface.

The exact implementation of the app is described in Chapter 3.1.

• Framework (LinkWaveFramework): A collection of classes and functions logi-

cally separated from the main application. Frameworks serve the same purpose

as class libraries in other programming languages like C#. They allow other ex-

tensions that cannot access the main application’s code to access functions and

classes used by both the main application and other extensions. This framework

is shared with the macOS app.

• Share Extension (LinkWaveShare): An extension that allows content from other

apps to be shared with the LinkWave app. For example, users can share a file from

the Files app to the LinkWave app to send the file to another device. This extension

is independent of the main application and can function without it. However, it is

installed alongside the main application and can access functions and classes

from the framework.

- 37 - Ruben Zukić

4 ARCHITECTURE

LinkWaveApp in Detail The LinkWaveApp can be compiled into an app that can be

published on the App Store. The main application of the iOS app for LinkWave is the

LinkWaveApp. It consists of multiple views written in SwiftUI. Each view represents a

screen within the app that users can see and interact with. This means that the entire

user interface (UI) of the app is defined within the LinkWaveApp.

LinkWaveFramework in Detail The LinkWaveFramework contains classes and func-

tions used by the LinkWaveApp and the LinkWaveShare extension. It includes the logic

required for communication with other devices on the network and the management of

files and the clipboard. The framework is written in Swift.

LinkWaveShare in Detail The LinkWaveShare extension allows content from other

apps to be shared with the LinkWave app. It consists of a view that enables users to

share content and a class that contains the logic for sharing the content. The extension

is written in Swift and uses the LinkWaveFramework to enable communication with other

devices. The extension is described in more detail in Chapter 3.1.

Ruben Zukić - 38 -

4 ARCHITECTURE

4.3.2 macOS

The following section describes the software architecture of the macOS app for LinkWave.

The macOS app was written in Swift using SwiftUI and, like the Windows app (see Chap-

ter 4.3.4), follows the MVVM (Model-View-ViewModel) architectural pattern.

macOS Core Concepts

SwiftUI apps on macOS function exactly like SwiftUI apps on iOS. The main difference

is that macOS apps run on a Mac, whereas iOS apps run on an iPhone or iPad. The

architecture of the macOS app for LinkWave is identical to the iOS app, except that the

user interface is tailored to macOS.

Additionally, macOS apps are much easier to publish than iOS apps. While iOS apps

can only be published on the Apple App Store, macOS apps can also be distributed via

a download link as a .dmg file. This allows macOS apps to be distributed without the

App Store.

Figure 21: macOS .dmg Installer

- 39 - Ruben Zukić

4 ARCHITECTURE

The macOS app for LinkWave was written in Swift using SwiftUI and is structured

in the same way as the iOS app (see Chapter 4.3.1). It consists of the following three

components:

• LinkWaveApp: Responsible for the app’s user interface.

• LinkWaveFramework: Contains logic shared between the app and the share exten-

sion.

• LinkWaveShare: Enables sharing content from other apps to the LinkWave app.

These components have essentially the same functionality as in the iOS app. How-

ever, under macOS, the LinkWaveApp has been adjusted.

LinkWaveApp in Detail The LinkWaveApp is responsible for the app’s user interface.

What differentiates the LinkWaveApp on macOS from the one on iOS is that macOS

supports more than one window and additional features like an icon in the menu bar.

These features are located in the LinkWaveApp, as they should only be available when

the app is open.

This means that, in addition to the view for the app’s main window, views for the menu

bar icon and the settings window are also defined in the LinkWaveApp. The following

views are present in the LinkWaveApp:

• Window(id: “main”): The main window of the app (see Chapter 3.2). This win-

dow includes a NavigationSplitView with a variable DetailView, which changes

based on the user’s page selection. This view allows the app to have a sidebar

with different pages.

• Window(id: “permissions”): A window that shows the user what permissions

the app requires.

• MenubarExtra: The menu bar icon that allows the user to open and close the app.

• Settings: A window where the user can change the app’s settings.

Ruben Zukić - 40 -

4 ARCHITECTURE

4.3.3 Android

The following section describes the software architecture of the Android app for LinkWave.

The Android app was written in Kotlin using Jetpack Compose and, like the Windows

app (see Chapter 4.3.4), follows the MVVM (Model-View-ViewModel) architectural pat-

tern.

Android Core Concepts

Every Android app consists of multiple components that work together to provide the

app’s functionality. The key components are briefly introduced below.

Activities An Activity can be understood as a screen within an app. Each screen with

which a user interacts (e.g., login screen, home screen, settings screen) is typically

managed by its own Activity. An Activity represents the window in which the app draws

the UI (user interface). Each Activity is independent of the others and can launch other

Activities using so-called Intents. The following example illustrates an Activity in Kotlin:

class MainActivity : ComponentActivity () {

override fun onCreate(savedInstanceState: Bundle ?) {

super.onCreate(savedInstanceState)

setContent {

MaterialTheme {

Greeting("Android")

}

}

}

}

Intents Intents are messaging objects used to request an action from another app

component. This could involve starting another Activity or Service or using Android

features like opening a webpage. Intents can also be used to transfer data between

components. The following example shows an Intent that opens the YouTube app:

- 41 - Jan Schäfer

4 ARCHITECTURE

val intent = Intent(Intent.ACTION_MAIN).apply {

‘package ‘ = "com.google.android.youtube"

}

startActivity(intent)

Here, a MAIN Intent is created and sent to the package com.google.android.youtube.

Android provides a variety of Intents to perform different actions. For example, a file can

be sent to another app using a SEND Intent. The MAIN Intent starts the MainActivity of

an app. The Intents an app supports are defined in the AndroidManifest.xml file.

Services A Service is a component that runs in the background to perform long-

running operations. For example, a Service can play music in the background without

the user having the app in the foreground. LinkWave uses a Service to announce the

device on the network in the background. The following example shows a Service:

class LinkWaveService : Service () {

override fun onStartCommand(

intent: Intent ,

flags: Int , startId: Int

): Int {

startForeground (1, notification)

startDiscovery ()

return super.onStartCommand(intent , flags , startId)

}

}

Since Android API Level 26 (Android 8.0), Services must run in the foreground, meaning

they must display a notification to inform the user that the Service is running in the

background and consuming resources. Such Services are referred to as Foreground

Services.

Broadcast Receiver Broadcast Receivers allow the app to receive broadcasts from

other apps or the system. An example would be listening for a broadcast indicating that

the device’s battery is low or that the device has been restarted.

Jan Schäfer - 42 -

4 ARCHITECTURE

class BootCompletedReceiver : BroadcastReceiver () {

override fun onReceive(context: Context , intent: Intent) {

if (Intent.ACTION_BOOT_COMPLETED == intent.action) {

// Code to execute when the boot is completed

}

}

}

Content Provider Content Providers enable data sharing between apps. A Content

Provider provides a standardized interface for accessing data. An example would be

sharing contacts between different apps or listing all media files (e.g., images and

videos) on the device.

AndroidManifest.xml The AndroidManifest.xml is the configuration file where app

components are configured. It defines which components exist, which permissions the

app requires, and which Intents the app supports. It also specifies which Activity is

opened when the app starts.

Trailing Lambdas in Kotlin Kotlin allows passing functions as the last argument of

another function, referred to as trailing lambdas. If a lambda expression is the last

parameter of a function, it can be placed outside the parentheses of the function call.

This syntax is frequently used in Jetpack Compose to make UI code more structured

and declarative.

- 43 - Jan Schäfer

4 ARCHITECTURE

@Composable

fun FancyBox(content: @Composable () -> Unit) {

Box {

content ()

}

}

The example shows a FancyBox function that creates a Box element with any given

content. The content is passed as a lambda expression. This component can then be

used as follows:

FancyBox {

Button(onClick = { /*TODO*/ }) {

Text(text = "Click␣me!")

}

}

Button is another composable function that expects two parameters: onClick and

content. onClick is a function executed when the button is clicked. content is the

button’s content, which in this case is a text element.

Dependency Injection Dependency Injection (DI) is a design pattern that allows a

program to be independent of how its dependencies are created, assembled, and repre-

sented. The goal is to remove hard-coded dependencies and allow them to be changed

either at runtime or compile-time. This makes it possible to use mock objects in tests

to replace dependencies. The DI framework Koin was used in the development of the

LinkWave app.

class DevicesViewModel(

private val bonjourController: BonjourController

) : ViewModel () { ... }

This ViewModel depends on a BonjourController, which is passed via the construc-

tor. Koin ensures that the BonjourController is created at runtime and passed to the

ViewModel.

Jan Schäfer - 44 -

4 ARCHITECTURE

val appModule = module {

single { BonjourController () }

viewModel { DevicesViewModel(get()) }

}

get() returns the BonjourController created by Koin at runtime. single means that

the BonjourController is created only once, and each subsequent call to get() returns

the same BonjourController.

- 45 - Jan Schäfer

4 ARCHITECTURE

Android Program Structure

As mentioned above, the Android app follows the MVVM architectural pattern. How the

different layers of the MVVM pattern interact is shown in Figure 22. The OS layer (Op-

erating System Layer) launches a specific Activity via an Intent. The Activity accesses

data from the Data Layer through ViewModels, which form the Presentation Layer.

Figure 22: OS - Features

Activities Activities are part of the UI Layer. The app consists of three Activities:

• MainActivity: The MainActivity is the window that opens when the app’s icon on

the Android home screen, known as the launcher, is pressed. The launcher sends

a MAIN Intent to the app, which then opens the MainActivity. In the MainActivity,

users can adjust settings such as network visibility and log in or out.

Jan Schäfer - 46 -

4 ARCHITECTURE

• ShareActivity: The ShareActivity opens when a SEND Intent is sent to the app.

This happens when a user uses Android’s “Share” feature to share a file. In the

ShareActivity, the user can select a device to which the file will be sent. The

selected device is then sent to the FileSendManager, which handles the file trans-

fer. The FileSendManager provides information about the transfer status, which is

passed to the UI Layer via a ViewModel.

• ClipboardActivity: The ClipboardActivity opens when a PROCESS_TEXT Intent is

sent to the app. Unlike the ShareActivity and MainActivity, the ClipboardActivity

does not display a UI. It simply passes the selected text to the ClipboardShareManager

via a ViewModel. The ClipboardShareManager then sends the text to all devices

associated with the same account.

Data Data required for each Activity can be accessed via ViewModels. ViewModels

are part of the Presentation Layer of the app. They contain the logic needed to process

the data from the Data Layer and pass it to the UI components. For example, to dis-

play the list of discovered devices in the MainActivity, the DevicesViewModel is used.

The DevicesViewModel contains a list of devices discovered via the BonjourController.

This list is passed to the MainActivity, which then displays it. This data flow is imple-

mented using Kotlin Flow [6].

LinkWaveService Since some functions need to be available in the background, a

foreground service is required. Even if the app is running in the background or closed,

the device should remain visible on the network and accept requests, such as shar-

ing a file. The LinkWaveService is a foreground service that automatically starts when

the device is rebooted or the app is opened. The service instantiates and starts the

BonjourAdvertiser, which ensures the device is discoverable on the network, and a

RequestListener, which handles TCP requests such as file transfers or clipboard shar-

ing. This allows the device to handle requests even when the app is closed. Figure 23

shows the UML diagram of the LinkWaveService.

- 47 - Jan Schäfer

4 ARCHITECTURE

Figure 23: UML of LinkWaveService

Jan Schäfer - 48 -

4 ARCHITECTURE

4.3.4 Windows

MVVM

This section describes the software architecture of the Windows app for LinkWave. The

Windows app was written in C# and XAML. The app follows the MVVM (Model-View-

ViewModel) architectural pattern. MVVM is a design pattern that separates the user

interface from the logic. This makes the logic easier to test and maintain. The MVVM

architecture consists of three parts:

Figure 24: MVVM Architecture

• Model: The Model is the data structure that stores the app’s data. The Model

contains no logic, only the data. In the Windows app for LinkWave, the Model

includes, for example, user data and device data.

• View: The View is the user interface of the app. The View displays the Model’s

data and forwards user input to the ViewModel. In the Windows app for LinkWave,

the View includes, for example, the window where users can initiate file transfers.

• ViewModel: The ViewModel contains the app’s logic, which processes the Model’s

data and passes it to the View. The ViewModel also contains the logic that pro-

cesses user input and passes it to the Model. In the Windows app for LinkWave,

the ViewModel includes, for example, the logic that starts file transfers.

Windows C# Project Structure

Microsoft recommends creating WinUI 3 projects using the Visual Studio extension

“Template Studio for WinUI (C#).” This extension generates a project with a precon-

- 49 - Ruben Zukić

4 ARCHITECTURE

figured structure consisting of the following components:

• The UI Project: The UI project is a WinUI application that contains the app’s user

interface. The app is built from this project. All other projects only include code

used by this project.

• The Core Project: The Core project is a class library that contains the core logic

of the app. It includes utility functions used by the user interface, simplifying the

use of functions from the backend project. The Core project itself does not include

any functions that directly access the network or file system.

• The Backend Project: The Backend project is a class library that contains the

logic for directly accessing the network or file system. It includes functions for

tasks such as file transfers or device discovery. The Backend project is used by

the Core project to implement the app’s core logic.

Ruben Zukić - 50 -

4 ARCHITECTURE

UI Project in Detail

The UI project can generate a “Packaged App” in the form of an .msix file. This app

can be distributed and installed on any Windows system from Windows 10 onward.

Installation is done by double-clicking the file, and it looks as follows:

Figure 25: Packaged App Installation

This installs the app along with all its components on the device. This means that

both the app itself and the “Share Extension” are installed.

The app consists of a single window (MainWindow.xaml). Within this window is a

page containing the menu and a frame for the app’s various pages (ShellPage.xaml).

The different pages are implemented as WinUI Pages (<name>.xaml) and displayed

within the ShellPage. These pages include:

• MainPage.xaml: The main page of the app. This is displayed when the app is

opened. It provides an overview of the app’s various functions and the user’s

account.

• AccountPage.xaml: The account page of the app. Here, users can log in to their

account and modify account settings.

• DevicesPage.xaml: The devices page of the app. This displays an overview of

nearby devices using LinkWave.

• SendFilePage.xaml: The file transfer page of the app. Here, users can send files

to other devices.

- 51 - Ruben Zukić

4 ARCHITECTURE

• SettingsPage.xaml: The settings page of the app. Here, users can modify the

app’s general settings.

The “Share Extension” is implemented as a sharing target and has its own window

(ShareWindow.xaml). This window displays a single page (SharePage.xaml).

Core Project in Detail

The Core project contains the app’s core logic. It includes utility functions used by

the user interface, simplifying the use of functions from the Backend project. These

functions are organized into utility classes (Services). The main classes include:

• LinkWaveService: The LinkWaveService manages all LinkWave functions, such

as discovering nearby devices. The LinkWaveService handles everything the main

app does with the Backend project.

• LinkWaveShareService: The LinkWaveShareService manages all LinkWave func-

tions related to the Share Extension. It performs similar tasks to the LinkWaveSer-

vice but only for functions used by the Share Extension. For instance, the LinkWave-

ShareService cannot receive files from other devices.

Ruben Zukić - 52 -

4 ARCHITECTURE

Backend Project in Detail

The Backend project contains the logic for directly accessing the network or file system.

It includes functions for tasks such as transferring files or discovering devices. The

Backend project is used by the Core project to implement the app’s core logic.

The LinkWave.Backend DLL plays an essential role in the overall system, enabling

the implementation of key services such as FileSharing, ClipboardSharing, secure en-

cryption, and efficient caching of data.

Core Components of the LinkWave.Backend DLL

The LinkWave Receiver In the LinkWave.Backend architecture, the LinkWaveReceiver.cs

component serves as the primary receiver for all incoming requests. This central inter-

face receives requests and forwards them to RequestSwitcher.cs to invoke the appro-

priate functions.

The RequestSwitcher Another critical component is RequestSwitcher.cs, which plays

a key role in routing requests to specific functions. It acts as a dispatcher, analyzing each

request and forwarding it to the relevant function based on its content and purpose.

Using the RequestSwitcher, LinkWave.Backend can efficiently respond to various

demands by directing requests to the designated processing units.

SSL Handshake The SSL.cs class is central to implementing the SSL handshake,

establishing a secure and encrypted connection between client and server. This class

ensures that all data transmissions are protected against unauthorized access.

- 53 - Ruben Zukić

4 ARCHITECTURE

Caching SqliteHandler.cs serves as the interface to the internal SQLite database,

providing wrapper functions for data queries as well as adding and updating data. This

class plays a crucial role in managing cache information and ensuring efficient data

processing within the application.

File and Clipboard Sender/Receiver The classes FileSender.cs, FileReceiver.cs,

ClipboardSender.cs, and ClipboardReceiver.cs are specifically designed for sending

and receiving file contents or clipboard data. These classes enable seamless data

exchange between users.

Ruben Zukić - 54 -

4 ARCHITECTURE

4.3.5 Server

Overview

The LinkWave Backend Service is designed as a central interface and plays a critical

role in managing and securing the system. Its primary function is to authenticate users

and devices to ensure that only authorized entities gain access. Additionally, it is re-

sponsible for data storage while maintaining high standards and best practices for data

integrity and privacy.

LinkWave uses GraphQL as a query language for communication with its API. Special

security measures in GraphQL ensure that sensitive data remains protected and is ex-

clusively managed by the server. For password protection, LinkWave uses a robust

algorithm called “Bcrypt.” Compared to other commonly used hash functions like SHA-

256, Bcrypt offers greater protection against brute-force attacks by significantly slowing

them down through its computationally intensive algorithm. This makes a significant

contribution to user data security. LinkWave uses the PostgreSQL database system,

known for its performance, to store data. The database design follows the code-first

principle using the EF Core .NET framework, allowing flexible data structure develop-

ment and simplifying database management and expansion.

Concept

In the backend architecture of LinkWave, we provide an efficient communication channel

that remains consistent across multiple platforms. Interaction begins when the website,

desktop app, or mobile app of the client sends a request. This request is then forwarded

to the server, where it is processed via the API.

A key component of our server is the GraphQL API, designed for processing specific

queries. The implementation of GraphQL uses Hot Chocolate, a library that facilitates

the integration of GraphQL into .NET applications [9]. Hot Chocolate offers a variety of

features that accelerate the development of GraphQL APIs and simplify their integration

into existing .NET applications. This allows app users to query exactly the informa-

tion they need, reducing the transmission of unnecessary data and optimizing system

performance.

- 55 - Arshia Reisi

4 ARCHITECTURE

Once a request is processed by the GraphQL API, interactions with the PostgreSQL

database occur. Here, CRUD operations—Create, Read, Update, and Delete—are ex-

ecuted. PostgreSQL was chosen for its reliability in storing and querying data.

Figure 26: Backend Architecture

Server and Hosting

Microsoft Azure is used as the cloud platform for hosting. Docker Compose manages

the Docker containers on this server, enabling efficient orchestration and scaling of our

applications.

Nginx as Reverse Proxy

An essential part of the infrastructure is the use of Nginx as a reverse proxy. This

acts as a proxy between user requests (e.g., via the web) and our server, receiving the

requests and forwarding them to the appropriate running service in Docker containers.

This provides several advantages:

• Security: Nginx hides the identity of the backend server, enhancing security by

preventing attackers from obtaining direct information about the internal server.

• SSL Encryption: Nginx enables simple configuration of SSL/TLS to ensure se-

cure communication between client and server.

Arshia Reisi - 56 -

4 ARCHITECTURE

The Nginx server for LinkWave is configured to redirect all HTTP requests to the secure

HTTPS channel, as shown in the following snippet:

server {

listen 80;

server_name api.linkwave.org;

return 301 https://$host$request_uri;

}

SSL Encryption

Only modern and secure SSL protocols and encryptions are used to ensure data in-

tegrity:

server {

listen 443 ssl;

server_name api.linkwave.org;

ssl_certificate /etc/letsencrypt/live/api.linkwave.org/

fullchain.pem;

ssl_certificate_key /etc/letsencrypt/live/api.linkwave.org/

privkey.pem;

ssl_protocols TLSv1.2 TLSv1 .3;

ssl_ciphers ECDHE -ECDSA -AES128 -GCM -SHA256:ECDHE -RSA -AES128 -GCM -

SHA256 :...;

}

Security Headers

To protect the system against common attack vectors, the following security headers

have been implemented:

add_header X-Frame-Options "SAMEORIGIN";

add_header X-Content-Type-Options nosniff;

add_header X-XSS-Protection "1; mode=block";

- 57 - Arshia Reisi

4 ARCHITECTURE

Proxy Configuration

Nginx acts as a proxy to enhance security by forwarding requests to services running in

Docker containers on an internally accessible port.

Arshia Reisi - 58 -

4 ARCHITECTURE

location / {

proxy_pass https://localhost:8082;

proxy_set_header Upgrade $http_upgrade;

proxy_set_header Connection ’upgrade’;

proxy_set_header Host $host;

proxy_cache_bypass $http_upgrade;

}

Server Security

Two user accounts are set up on the server: ‘linkwave-admin‘ for administrative tasks

and ‘linkwave-web‘ for web applications and hosting. The ‘linkwave-web‘ account has re-

stricted privileges, adhering to the principle of least privilege, thereby increasing system

security. By dividing user roles, only authorized actions can be performed, minimizing

the risk of security breaches.

- 59 - Arshia Reisi

5 IMPLEMENTATION OF FEATURES

5 Implementation of Features

- 60 -

5 IMPLEMENTATION OF FEATURES

This section describes the implementation of the individual features of LinkWave across

various operating systems. It also explains the specific functionality and limitations on

each platform.

5.1 Device Discovery

Device discovery enables users to find other devices in their vicinity and communicate

with them without having to add them manually.

Device discovery is implemented in the LinkWave app on all operating systems. It

is essential for the use of all LinkWave features. To simplify the usage of LinkWave,

it is crucial that device discovery operates automatically, without user interaction, and

reliably.

This is also a unique selling point compared to other “connectivity apps” like KDE

Connect, where devices must be added manually. This step is unnecessary in LinkWave,

as device discovery runs automatically.

- 61 - Ruben Zukić

5 IMPLEMENTATION OF FEATURES

5.1.1 Functionality

The following figure illustrates the use of Bonjour or mDNS by LinkWave to enable the

discovery and communication with other devices on the network.

Figure 27: Device Discovery

1. mDNS Query: A device (Device A) sends an mDNS query in multicast mode to

discover services using “_linkwave._tcp”. This query is visible to all devices on the

network.

2. mDNS Response: Another device (Device B) responds with a PTR (Pointer)

Record response, which contains the name of the service (“PC2._linkwave._tcp”).

3. Service and TXT Records: Device A then queries for SRV (Service) and TXT

(Text) Records to obtain the hostname (PC2), the port of the LinkWave service

(4445), and additional information such as the public key.

Ruben Zukić - 62 -

5 IMPLEMENTATION OF FEATURES

4. A-Record Query: To find the IP address of the service, Device A sends an A-

Record query for “PC2”.

5. A-Record Response: Device B responds with the IP address “192.168.1.22”.

6. Connection Establishment: Finally, Device A establishes a unicast connection to

the LinkWave service by connecting to the IP address and specified port (“192.168.1.22:4445”).

The port is dynamically chosen based on the available ports in the operating sys-

tem used for the LinkWave TCP listener.

- 63 - Ruben Zukić

5 IMPLEMENTATION OF FEATURES

5.1.2 On iOS and macOS

Bonjour or zero-configuration networking is implemented in iOS and macOS together

and is provided via Apple’s NWBrowser and NWListener classes. As the creator of Bon-

jour, Apple offers classes for easy usage. The device discovery and advertising of the

local device in LinkWave are implemented by the LinkWaveHelper class.

Device Discovery Device discovery using Bonjour can be implemented very easily in

Swift through the NWBrowser class. First, an instance of the NWBrowser class is created

and configured. The configuration includes the service type, protocol, and domain. How

LinkWave uses Bonjour in detail is described in Chapter 5.1.2.

let browser: NWBrowser = .init(

for: .bonjourWithTXTRecord(

type: "_linkwave._tcp",

domain: "local"

),

using: .tcp

)

browser.browseResultsChangedHandler = ResultsChangedEventHandler

To use device discovery, an event handler is required to respond to new or removed

devices. This is defined through the function ResultsChangedHandler. In this function,

a change set is received, which contains the added and removed devices. Each change

is then processed in a loop. The change is a selection of the NWBrowser.Result.Change

enum. In the loop, the endpoint of the device can be extracted from the change, and the

device can be added or removed accordingly. This is possible because enums in Swift

can have associated values for different cases.

Ruben Zukić - 64 -

5 IMPLEMENTATION OF FEATURES

private func ResultsChangedEventHandler(

results _: Set <NWBrowser.Result >,

changes: Set <NWBrowser.Result.Change >

) {

for change in changes {

switch change {

case let .added(endpoint):

// Add device to the list of visible devices

case let .removed(endpoint):

// Remove device as it is no longer visible

}

}

}

From this endpoint, additional information such as the device’s name or IP address

can be extracted. LinkWave also uses a TXT record to transmit additional information

like the device type. TXT records are stored in the endpoint under endpoint.metadata.dictionary.

After these queries, the endpoint with the additional information is wrapped into a

LinkWaveDevice object and added to a list or removed from it. This list is then passed

to the UI to display the devices.

The LinkWaveDevice object contains the following information:

• Name: A unique identifier for each device.

• Type: Describes the type of device (e.g., Windows, Mac, Android).

• Origin: The origin of the device. This value is an enum that can take the values

“Network” and “Bluetooth.” The value “Network” means the device was discovered

via the network. The value “Bluetooth” is intended for future extensions. In the

enum value “Network,” the endpoint of the device is also stored.

- 65 - Ruben Zukić

5 IMPLEMENTATION OF FEATURES

Figure 28: UML of LinkWaveDevice

Advertising the Local Device Advertising the local device in LinkWave is also imple-

mented using Apple’s NWListener class. The NWListener is initialized with a service

type and a random port. The service type is the same as in device discovery since all

LinkWave devices use the same service type.

let listener: NWListener = try! NWListener(using: .tcp , on: .any)

listener.service = .init(

name: deviceInfo.deviceName ,

type: "_linkwave._tcp",

domain: "local"

)

The NWListener is then configured with a TXT record that contains additional infor-

mation, such as the device type. Using the compiler directive #if os(iOS), the device

type is set to either iOS or macOS. Based on the operating system, the variable osCode

is assigned the value “iOS” or “macOS.” The TXT record is passed as a dictionary.

Ruben Zukić - 66 -

5 IMPLEMENTATION OF FEATURES

#if os(iOS)

let osCode = "iOS"

#elseif os(macOS)

let osCode = "macOS"

#endif

let txtRecord = ["deviceType": osCode]

listener.service.txtRecord = .init(txtRecord)

listener.newConnectionHandler = NewConnectionHandler

The NWListener is assigned a NewConnectionHandler, which responds to new con-

nections. In this handler, the connection is accepted, and the various functions of

LinkWave are invoked. It is essential that this handler runs on a background thread

to prevent blocking the UI.

private func NewConnectionHandler(newConnection: NWConnection) {

DispatchQueue.global(qos: .background).async {

newConnection.stateUpdateHandler = { newState in

switch newState {

case .ready:

newConnection.receive () { content , _, _, _ in

let linkWaveCommandRequest = JSONDecoder ()

.decode(LinkWaveCommandRequest.self , from: content !)

swift linkWaveCommandRequest.RequestType {

case .sendFile: // Receive file

// Other requests

} } } } }

Incoming connections send a JSON object, which is decoded into a LinkWaveCommandRequest

object. This object contains information about the request type. Based on the content

of the request, the corresponding function is then called.

- 67 - Ruben Zukić

5 IMPLEMENTATION OF FEATURES

5.1.3 On Android

Bonjour or zero-configuration networking is implemented in Android as the Network Ser-

vice Discovery Protocol (NSD) and is provided through the NsdManager class. Device

discovery and advertising the local device in the LinkWave app are implemented in two

classes: BonjourController and BonjourAdvertiser.

Figure 29: UML of BonjourController and BonjourAdvertiser

BonjourController

Figure 30: Process of Device Discovery

Jan Schäfer - 68 -

5 IMPLEMENTATION OF FEATURES

The BonjourController is responsible for scanning for devices on the local network

and is available in the app’s ViewModels via dependency injection. Figure 30 shows

the device discovery process. The discoverServices() method provided by the Ns-

dManager starts the discovery process. A discoveryListener is passed to it, which

provides callback methods for the discovery process, allowing the detected devices to

be processed.

Initialization The instance of the NsdManager is initialized using the app’s androidContext.

The androidContext contains information about the “application environment.” In this

context, it is used to access the system service NSD. The following code snippet shows

the initialization of the NsdManager.

private val nsdManager by lazy {

androidContext

.getSystemService(Context.NSD_SERVICE) as NsdManager

}

discoverServices() The BonjourController provides the startDiscovery() method,

which starts the device discovery process. This method calls the discoverServices()

method of the NsdManager to initiate the discovery. The service type, protocol, and

discoveryListener are passed to it.

fun startDiscovery () {

[...]

nsdManager.discoverServices(

BonjourConfig.SERVICE_TYPE ,

NsdManager.PROTOCOL_DNS_SD ,

discoveryListener

)

}

- 69 - Jan Schäfer

5 IMPLEMENTATION OF FEATURES

• SERVICE_TYPE: The service type is the service identifier used to discover de-

vices. Similar to the hostname in traditional DNS, it does not identify a single host

but rather all hosts offering a specific service. All LinkWave devices use the same

service type: _linkwave._tcp.

• PROTOCOL_DNS_SD: The protocol used for device discovery. Here, the DNS

Service Discovery protocol is used.

• discoveryListener: The implementation of the NsdManager.DiscoveryListener

interface. This interface provides callback methods for the discovery process:

when the search for services starts, when a service is found or lost, and when

an error occurs. “Lost” in this context means a service is no longer available.

Figure 31 shows the methods of the DiscoveryListener.

Figure 31: UML of DiscoveryListener

onServiceFound() When a device is found, the onServiceFound() method of the

discoveryListener is called. Now, connection information such as the IP address and

port number must be retrieved using the nsdManager.resolveService() method. This

method also receives an object with callback methods that are triggered when the in-

formation is retrieved or an error occurs. Since Android 14, an implementation of the

NsdManager.ServiceInfoCallback interface can be used for this purpose. Unlike the

outdated NsdManager.ResolveListener, the ServiceInfoCallback can respond when

an attribute of a service changes. For instance, if the IP address of a device changes, the

ServiceInfoCallback can handle this. However, as this interface is only available start-

ing with Android 14, LinkWave still uses the ResolveListener. The ResolveListener

Jan Schäfer - 70 -

5 IMPLEMENTATION OF FEATURES

receives an onServiceResolved() callback, which is called when a specific service

is resolved. If an attribute of a device changes, it must be resolved again since the

ResolveListener is discarded after the first resolution and cannot respond to changes

of the resolved service.

override fun onServiceFound(serviceInfo: NsdServiceInfo ?) {

[...]

val resolveListener = ResolveListener { resolvedServiceInfo ->

_scannedDevices.update { devices ->

val newDevice = BonjourDevice

.fromNsdServiceInfo(resolvedServiceInfo)

if (newDevice in devices) devices

else devices + newDevice

}

}

nsdManager.resolveService(serviceInfo , resolveListener)

}

onServiceLost() When a device is lost, the onServiceLost() method of the discoveryListener

is called. In this method, the device is removed from the list of discovered devices.

override fun onServiceLost(serviceInfo: NsdServiceInfo ?) {

[...]

_scannedDevices.update { devices ->

devices.filter { it.name != serviceInfo.serviceName

&& it.address != serviceInfo.host }

}

}

Updating the User Interface The list of discovered devices is provided via a StateFlow

in the ViewModels of the app. The BonjourController updates this StateFlow with the

discovered devices. The ViewModels of the app can subscribe to this StateFlow and

always receive the current list of discovered devices. Kotlin Flow is a library that en-

- 71 - Jan Schäfer

5 IMPLEMENTATION OF FEATURES

ables the processing of asynchronous data streams. The following code shows how the

ViewModels are used in the app’s Activities to display the discovered devices.

class ShareActivity () : ComponentActivity () {

private val devicesViewModel: DevicesViewModel by viewModel ()

setContent {

val devicesState = bonjourViewModel.state

.collectAsState ()

DeviceList(

devices = bonjourState.value.scannedDevices ,

)

}

}

Jan Schäfer - 72 -

5 IMPLEMENTATION OF FEATURES

BonjourAdvertiser

Figure 32: Process of Advertising the Device

The BonjourAdvertiser is responsible for advertising the device on the local net-

work. It is managed by the LinkWaveService, which is described in more detail in Chap-

ter 5.5.3. When the service starts, the BonjourAdvertiser is initialized, and the device

is advertised on the local network.

startAdvertising() The BonjourAdvertiser is initialized when the LinkWaveService

starts. For this purpose, the startAdvertising() method is called, which registers a

service with the name of the device using the NsdManager. The device information is

stored in an NsdServiceInfo object and passed to the NsdManager.

val serviceInfo = NsdServiceInfo ().apply {

serviceName = BonjourConfig.serviceName

serviceType = BonjourConfig.SERVICE_TYPE

port = BonjourConfig.SERVICE_PORT

setAttribute("deviceType", LocalDeviceInfo.type.name)

}

• serviceName: The name of the service that will appear on the local network.

Here, the device name is used.

• serviceType: The service type that will appear on the local network. Here, LinkWave’s

service type is used: _linkwave._tcp.

• port: The port on which the service is accessible. LinkWave uses a random port.

- 73 - Jan Schäfer

5 IMPLEMENTATION OF FEATURES

• setAttribute: Additional information about the device can be stored here. In this

case, the device type is stored.

The process of advertising the device on the network is started with the registerService

method of the NsdManager. This method receives the NsdServiceInfo object and a

registrationListener. The registrationListener provides callback methods that

are called when the process is successful or when an error occurs.

Figure 33: UML of RegistrationListener

suspend fun startAdvertising () = withContext(Dispatchers.IO) {

val serviceInfo = [...]

nsdManager.registerService(

serviceInfo ,

NsdManager.PROTOCOL_DNS_SD ,

registrationListener

)

}

stopAdvertising() The BonjourAdvertiser provides the method stopAdvertising()

to remove the local device from the network. For this, the unregisterService() method

of the NsdManager is called.

suspend fun stopAdvertising () = withContext(Dispatchers.IO) {

nsdManager.unregisterService(registrationListener)

}

Jan Schäfer - 74 -

5 IMPLEMENTATION OF FEATURES

5.1.4 On Windows

For device discovery on Windows, a library called “Zeroconf” is used. The “Zeroconf”

library allows sending mDNS queries and receiving mDNS responses. Device discov-

ery is implemented via the Discovery and Advertise classes. The methods of these

classes are used or called within the LinkWaveService class in LinkWaveUI.Core. The

Discovery class handles scanning for devices on the local network, while the Advertise

class is responsible for advertising the local device.

Discovery

The FindLinkWaveDevices() function uses the ZeroconfResolver library to discover de-

vices that offer LinkWave services on the local network (other devices with LinkWave

installed). To achieve this, a listener is created that searches for mDNS (Multicast DNS)

entries published under the service name “_linkwave._tcp.local”.

Figure 34: UML Discovery

public static class Discovery

{

public static ZeroconfResolver.ResolverListener FindLinkWaveDevices

()

{

var options = ZeroconfResolver

.CreateListener("_linkwave._tcp.local.");

return options;

}

}

- 75 - Ruben Zukić

5 IMPLEMENTATION OF FEATURES

Advertise

The method RegisterService() uses the service name “_linkwave._tcp” to create a ser-

vice description, which is then announced on the network. The ServiceProfile instance is

configured with the given instance name, the service name, and the port. Subsequently,

this configuration is announced on the local network using the Advertise method, allow-

ing other devices to discover and interact with the service.

Figure 35: UML Advertisement

public class Advertisement

{

public static async Task RegisterService(string instance ,

ushort port)

{

string serviceName = "_linkwave._tcp";

var service = new ServiceProfile(instance , serviceName ,

port);

// Set service fields

sd.Advertise(service);

}

}

Ruben Zukić - 76 -

5 IMPLEMENTATION OF FEATURES

5.1.5 On the Server

The following section describes the GraphQL endpoints for device discovery on the

server:

Database Structure

Figure 36: Devices Table

- 77 - Arshia Reisi

5 IMPLEMENTATION OF FEATURES

The table consists of several fields that work together to store comprehensive data

for each device:

• Id (UUID): Unique identifier for each device.

• Name (String): Name of the device, provided by the user for easy identification.

• Type (String): Describes the type of the device (e.g., Windows, Mac, Android).

• Owner (User): References the owner of the device in the ’Users’ table.

• CertFingerprint (String): A text field that stores the certificate fingerprint gener-

ated when an account is registered on a device.

• CreatedAt (DateTime): The date and time the device entry was created.

GraphQL Endpoints for Devices

AddDevice The GraphQL mutation endpoint AddDevice allows users to add new de-

vices to the system. The endpoint expects device information and stores it in the ’De-

vices’ table. The associated user is updated to reflect the new device in their device

list.

public async Task <Database.Models.Device > AddDevice(LinkWaveContext

dbContext , Guid userId , string deviceName , string deviceType ,

string fingerprint)

{

...

dbContext.Devices.Add(device);

user.Devices.Add(device);

return device;

// Error handling is omitted

}

GetDevicesByUserId The query endpoint GetDevicesByUserId allows users to re-

trieve a list of all registered devices associated with their account. This endpoint returns

Arshia Reisi - 78 -

5 IMPLEMENTATION OF FEATURES

a collection of device data that can be used for management or verification purposes by

the user.

public async Task <List <Database.Models.Device >> GetDevicesByUserId(

LinkWaveContext dbContext , Guid userId)

{

var usersDevices = await dbContext.Users.SelectMany(x => x.

Devices).Where(x => x.Owner.Id == userId).ToListAsync ();

return usersDevices;

}

UpdateDeviceDetails The UpdateDeviceDetails endpoint is used to update the data

of an existing device. This can be required for various scenarios, such as updating

the certificate fingerprint or device name, ensuring the device data is up-to-date and

maintaining system integrity.

public async Task <Database.Models.Device > UpdateDeviceDetails(

LinkWaveContext dbContext , Guid deviceId , string newDeviceName ,

string newCertFingerprint)

{

...

deviceToUpdate.CertFingerprint = newCertFingerprint;

dbContext.Devices.Update(deviceToUpdate);

return deviceToUpdate;

}

- 79 - Arshia Reisi

5 IMPLEMENTATION OF FEATURES

DeleteDevice The DeleteDevice endpoint is responsible for removing devices from

the system.

public async Task <bool > DeleteDevice(LinkWaveContext dbContext ,

Guid deviceId)

{

...

dbContext.Devices.Remove(deviceToRemove);

await dbContext.SaveChangesAsync ();

return true;

}

Arshia Reisi - 80 -

5 IMPLEMENTATION OF FEATURES

5.2 File Transfer

File transfer is one of the most important features of LinkWave. It enables files to be

transferred between different devices. File transfer works without restrictions on all op-

erating systems.

To make the experience as seamless as possible for users, a uniform workflow was

designed. The recommended workflow for file transfer is as follows:

1. Share: When using other apps, you need to use the system-specific sharing func-

tion for the files you want to transfer.

2. Select LinkWave: In the menu that opens, you can select LinkWave. Once

LinkWave is installed, it automatically integrates into this menu.

3. Select Device: You then need to select the device to which the files should be

sent. This device must be nearby since the file transfer occurs via a direct connec-

tion between the devices.

4. Confirm: Once the device is selected, the target device receives a notification. In

this notification, you can confirm or reject the file transfer. Once confirmed, the

file transfer begins. The file appears immediately in the location selected in the

settings.

These four steps provide the same workflow as Apple’s “Airdrop,” which is highly

regarded for its simplicity and serves as a benchmark for LinkWave.

- 81 - Ruben Zukić

5 IMPLEMENTATION OF FEATURES

5.2.1 Functionality

The file-sharing feature of LinkWave is designed as a secure and user-friendly pro-

cess based on an automated and encrypted communication flow. The functionality of

LinkWave’s file-sharing feature is described below as represented in the application’s

flow diagram:

Figure 37: File Sharing

1. Bonjour Discovery: The process begins with the discovery of devices with LinkWave

installed via the Bonjour protocol. LinkWave uses the Bonjour protocol to automat-

ically detect devices on the local network.

2. TLS Handshake: After device discovery and recipient selection, LinkWave estab-

lishes a secure connection using TLS (Transport Layer Security), represented by

the TLS handshake. This ensures encrypted communication between devices and

protects transferred files from potential security risks.

3. Request (FILE_SHARE): The sending device (Device A) signals its readiness to

exchange data through a corresponding request to the receiving device (Device

B), initiating the data exchange.

4. Response (ACK|RST): Device B responds to the request either with an acknowl-

edgment (ACK) or a reset (RST). An ACK continues the process, while an RST

rejects the request and terminates the process.

Ruben Zukić - 82 -

5 IMPLEMENTATION OF FEATURES

5. Send File Information: After successful acknowledgment, Device A sends infor-

mation about the file to be shared to Device B. LinkWave uses this information to

provide the recipient with details such as file size, type, and name.

6. Accept/Decline: Based on the received file information, Device B can choose to

accept or decline the file. LinkWave provides a user interface for the recipient to

make this decision.

7. Send File: If the recipient accepts the file, Device A begins transmitting the file

to Device B. LinkWave manages the transfer process and displays the transfer

progress.

8. Error: If errors occur during the transfer, LinkWave provides mechanisms for error

detection and reporting.

- 83 - Ruben Zukić

5 IMPLEMENTATION OF FEATURES

5.2.2 On iOS and macOS

File transfer is implemented on iOS and macOS using TCP. The file transfer is realized

via Apple’s NWConnection class. The code is identical on both operating systems since

the NWConnection class is available in Swift on both platforms.

Sending Files

To send files, the sendFileHandler function can be used. This function takes the follow-

ing parameters:

• Endpoint (NWEndpoint): The endpoint of the device to which the file should be

sent.

• FileStream (InputStream): The stream of the file to be sent.

• FileName (String): The name of the file to be sent.

• FileSize (Int64): The size of the file to be sent.

• FileSendProgress (inout Double): An inout parameter through which the progress

in percentage is forwarded to the UI.

• AcceptedCallback ((Bool) -> Void): A callback function called when the file

transfer is accepted or declined.

• CompletionCallback ((Bool) -> Void): A callback function called when the file

transfer is completed.

In this function, the file transfer is carried out as described in Chapter 5.2.1. The file

stream is split into small packets and sent sequentially to the device. The progress of

the file transfer is forwarded to the UI so that the user can see the progress. Once the

file transfer is complete, the CompletionCallback function is called.

The send() and receive() methods provided by Apple in the NWConnection class

are asynchronous and do not block the main thread. These methods handle the transfer

of all data packets. To create an NWConnection from a Bonjour endpoint, the endpoint

is simply passed to the constructor. The NWConnection can then be started on the main

Ruben Zukić - 84 -

5 IMPLEMENTATION OF FEATURES

thread using the start(queue: .main) method. Data packets are transmitted asyn-

chronously. The send() and receive() methods work with callbacks that are invoked

when data is sent or received.

connection.receive(

minimumIncompleteLength: 1, maximumLength: 1024

) { content , _, _, error in

// Process data

}

The file is read from an InputStream in chunks and sent to the device using the

send() method. The InputStream is read in chunks of 1024 bytes and transmitted to

the device. The progress of the file transfer is forwarded to the UI so the user can

monitor it. This process is carried out in a loop until the entire file is transferred. Thanks

to the callback mechanism, there is no need to wait for the transfer of one chunk to

complete before sending the next, thus speeding up the transfer process.

var buffer = [UInt8](repeating: 0, count: transferChunkSize)

while case let amount = fileStream.read(

&buffer ,

maxLength: transferChunkSize),

amount > 0 {

let chunk = Array(buffer [..< amount])

connection.send(content: chunk) { error in

// Update UI upon successful transfer

}

}

Receiving Files

Receiving files in the LinkWave app is implemented by the LinkWaveHelper class. This is

another function that can be invoked in the NewConnectionHandler (see Chapter 5.1.2).

Once the connection is established, the information about the file to be received is

transmitted. This information includes the file name and size. A popup is then displayed,

- 85 - Ruben Zukić

5 IMPLEMENTATION OF FEATURES

allowing the user to accept or reject the file transfer. Additionally, a callback is registered,

which is triggered when the file transfer is accepted or rejected. If the user accepts the

file transfer, the file is received and stored. The progress of the file transfer is forwarded

to the UI so the user can monitor it.

Ruben Zukić - 86 -

5 IMPLEMENTATION OF FEATURES

5.2.3 On Android

The following section describes the implementation of file transfer in the Android app.

File transfer is implemented via a TCP connection.

Sending Files

Figure 38 shows the file transfer process on Android.

Figure 38: File Transfer Process on Android

- 87 - Jan Schäfer

5 IMPLEMENTATION OF FEATURES

To share a file, users must use Android’s “Share” feature. When the LinkWave app is

selected in the “Share” window, Android sends a SEND intent with a URI pointing to the

file to the app. To enable the app to receive a SEND intent, an intent-filter must be

configured. This is defined in the AndroidManifest.xml file.

<activity

android:name=".ui.share.ShareActivity"

android:excludeFromRecents="true"

android:exported="true"

android:launchMode="singleInstance"

android:theme="@style/Theme.App">

<intent -filter >

<action android:name="android.intent.action.SEND" />

<category android:name="android.intent.category.DEFAULT" />

<data android:mimeType="*/*" />

</intent -filter >

</activity >

Here is the intent-filter that intercepts the SEND intent. The intent-filter is

configured to receive all file types. The mimeType specifies the type of file. The mimeType

for a jpeg image is image/jpeg. */* indicates that the filter applies to all file types.

ShareActivity The intent-filter belongs to the ShareActivity. When the app re-

ceives a SEND intent, either the onCreate() method or the onNewIntent() method is

called. Which method is invoked depends on the launchMode and whether the Activity

is already running in the background. singleInstance ensures that only one instance

of the Activity exists. If the Activity is already in the background, the onNewIntent()

method is called; otherwise, the onCreate() method is called.

Jan Schäfer - 88 -

5 IMPLEMENTATION OF FEATURES

override fun onCreate(savedInstanceState: Bundle ?) {

super.onCreate(savedInstanceState)

intent ?.let { handleIntent(it) }

// ... Initialize UI

}

override fun onNewIntent(intent: Intent ?) {

super.onNewIntent(intent)

intent ?.let { handleIntent(it) }

}

handleIntent() In the handleIntent() method, the intent is processed. The URI con-

tained in the intent is passed to the ShareViewModel, which reads the file’s data and

temporarily stores it as selectedFile.

private fun handleIntent(intent: Intent) {

when (intent.action) {

Intent.ACTION_SEND -> {

val uri = intent.getParcelableExtra(Intent.EXTRA_STREAM

, Uri::class.java)

if (uri == null) return

shareViewModel.selectFile(uri , this)

}

[...]

}

}

The selected file is displayed in the ShareActivity. Now, a device from the DeviceList

must be selected to which the file should be sent. The following code snippet shows how

the devices and the selected file are displayed in the ShareActivity.

override fun onCreate(savedInstanceState: Bundle ?) {

setContent {

- 89 - Jan Schäfer

5 IMPLEMENTATION OF FEATURES

val fileState = shareViewModel.state.collectAsState ()

val devicesState = devicesViewModel.state.collectAsState ()

FileArea(file = fileState.value.selectedFile)

DeviceList(

devices = devicesState.value.scannedDevices ,

fileTransfers = fileState.value.fileTransfers ,

onSelect = { device ->

shareViewModel.sendFile(device)

}

)

}

}

FileSendManager The FileSendManager manages outgoing file transfers. It is used

by the ShareViewModel to send files. Figure 39 shows the class diagram of the FileSendManager.

Figure 39: UML of FileSendManager

The FileSendManager stores the current file transfer in a HashMap. The newFileTransfer()

method creates a new file transfer and saves it in the HashMap. The send() method of

the FileTransfer is called to start the file transfer.

fun newFileTransfer(file: AndroidFile , device: LinkWaveDevice) {

if (_pendingTransfers.value.containsKey(device)) {

return

}

Jan Schäfer - 90 -

5 IMPLEMENTATION OF FEATURES

val fileTransfer = FileTransferOutgoing(androidContext , file ,

device)

_pendingTransfers.update { transfers ->

transfers + (device to fileTransfer)

}

fileSendManagerScope.launch {

fileTransfer.send()

}

FileTransferOutgoing A FileTransferOutgoing object is responsible for sending a

file to another device. It uses a TCP-Socket connection to send the file and provides

information about the status and progress of the file transfer.

Figure 40: UML of FileTransferOutgoing

send() The exact process of file transfer is described in Section 5.2.1. The Request

objects as well as the file information are serialized as JSON and sent to the receiving

device via the Socket connection. The following code snippet demonstrates sending the

file information.

val outputStream = socket.getOutputStream ()

val fileInfo = FileShareRequest(

file.name ,

- 91 - Jan Schäfer

5 IMPLEMENTATION OF FEATURES

file.size ,

file.calculateChecksum(androidContext)

)

outputStream.writeJson(fileInfo)

The writeJson extension function serializes any object as JSON and writes the se-

rialized data to the OutputStream. The kotlinx.serialization library [7] is used for

this. To receive the response to the FileShareRequest query, the readJson extension

function is used.

val fileShareResponse =

inputStream.readJson <FileShareResponse >(1024)

If the request is accepted, the file is read in chunks and sent to the receiving device

via the Socket connection. The progress of the file transfer is forwarded to the UI so

that the user can monitor it. The following code snippet shows the process of sending

the file.

while (stream.read(buffer , 0, buffer.size)

.also { read -> bytesRead = read } != -1

) {

outputStream.write(buffer , 0, bytesRead)

bytesTotalRead += bytesRead

_progress.value = bytesTotalRead.toFloat () / file.size

}

Jan Schäfer - 92 -

5 IMPLEMENTATION OF FEATURES

Receiving Files

Since receiving files should also work in the background, even when the app is closed,

the receiving process runs within the LinkWaveService (see Section 5.5.3). The receiv-

ing process is illustrated in Figure 41.

Figure 41: File Transfer Process on Android

- 93 - Jan Schäfer

5 IMPLEMENTATION OF FEATURES

RequestListener The RequestListener is launched by the LinkWaveService in its

own coroutine. It is responsible for processing incoming requests. Figure 42 shows the

class diagram of the RequestListener.

Figure 42: UML of RequestListener

FileReceiveManager When a FILE_SHARE request is received, it is forwarded to the

FileReceiveManager. The FileReceiveManager stores the current file transfers in a

HashMap and displays a notification to the user, allowing them to accept or decline the

file transfer.

Figure 43: UML of FileReceiveManager and FileActionReceiver

FileActionReceiver The FileActionReceiver is a BroadcastReceiver that responds

to the acceptance or rejection of a file transfer. In the notification shown to the user, two

actions are defined, which, when selected, send the respective intent to the FileActionReceiver

to either accept or decline the file.

Jan Schäfer - 94 -

5 IMPLEMENTATION OF FEATURES

override fun onReceive(context: Context?, intent: Intent ?) {

// read id from intent ...

when (intent.action) {

ACTION_FILE_ACCEPT -> {

onAccepted(id)

}

ACTION_FILE_DECLINE -> {

notificationManager.cancel(id)

onDenied(id)

}

}

}

The onAccepted() and onDenied() callback methods are defined in the FileReceiveManager.

The onAccepted() function is called when the user accepts the file transfer. In this func-

tion, the file transfer is started. The onDenied() function is called when the user declines

the file transfer. In this function, the file transfer is canceled. The following code snippet

shows the onAccepted() function as an example.

private val fileActionReceiver = FileActionReceiver(

onAccepted = { id ->

val fileTransfer = pendingTransfers[id]

?: return@FileActionReceiver

fileReceiveManagerScope.launch {

fileTransfer.receiveFile(id)

pendingTransfers.remove(id)

}

},

// ...

)

receiveFile() As with sending the file, the file transfer is received in chunks. The

progress of the file transfer is displayed in the notification. The file is received in chunks

- 95 - Jan Schäfer

5 IMPLEMENTATION OF FEATURES

and saved.

Jan Schäfer - 96 -

5 IMPLEMENTATION OF FEATURES

5.2.4 On Windows

Figure 44: UML LinkWaveSender

After selecting the files to share and the recipient, LinkWave initiates the transfer pro-

cess by sending a specific “Command” to the recipient device. This process is handled

by the LinkWaveSender.

Sending Commands The LinkWaveSender uses an SSL network stream to send the

command to the recipient.

public static async Task SendCommandAsync (...)

{

// Serialization and sending of the command

LinkWaveCommandRequest command =

new LinkWaveCommandRequest(requestType);

var serializedCommand = DataSerializer.SerializeObject(command)

;

await stream.WriteAsync(commandBytes , 0, commandBytes.Length);

...

}

- 97 - Ruben Zukić

5 IMPLEMENTATION OF FEATURES

Receiving and Processing Commands

On the recipient side, the LinkWaveReceiver handles the incoming command. This

class is responsible for waiting for incoming commands, processing them, and forward-

ing them to the RequestSwitcher class. The StartLoopAsync method initiates an asyn-

chronous loop that waits for incoming connections. The method uses SSLStream to

ensure a secure connection. SSLStream is a class that facilitates secure communica-

tion over SSL (Secure Sockets Layer) or TLS (Transport Layer Security). It is used to

establish a secure connection between two devices. [10]

LinkWaveReceiver.cs

public async Task StartLoopAsync (...)

{

while (true)

{

// SSL Handshake

SslStream sslStream = await

SSL.AcceptAndAuthenticateClientAsync (..., certificate);

_ = HandleClient(sslStream);

}

}

Once a connection is established, the HandleClient method processes the com-

mands.

private async Task HandleClient(SslStream sslStream)

{

var bytesRead = await sslStream.ReadAsync(commandBytes ,...);

_ = RequestSwitcher.Handle(linkWaveCommandRequest

,sslStream ,_uIFunctionStore);

// Error handling has been omitted

}

Ruben Zukić - 98 -

5 IMPLEMENTATION OF FEATURES

Handling Requests

The RequestSwitcher class acts as a central hub for routing incoming commands. It an-

alyzes the type of each request and delegates it to the appropriate handlers responsible

for specific processing. In this case, the RequestSwitcher activates the FileSharingHandler,

which manages the actual file-sharing process.

public static async Task Handle (...)

{

switch (commandRequest.RequestType)

{

case RequestTypes.FILE_SHARE:

await FileSharingHandler

.HandleAsync(networkStream ,uIFunctionStore);

break;

// Other requests or RequestTypes

}

// Error handling omitted

}

File Sharing Handlers

The FileReceiver class plays a key role in the file-receiving process. It manages the

acceptance, validation, and storage of files sent by another device.

ReceiveFileInformation This method reads incoming data from the network stream,

which contains information about the file to be received. This information is deserial-

ized and stored in a FileShareRequest object. The FileShareRequest object contains

details such as the file name and file size.

- 99 - Ruben Zukić

5 IMPLEMENTATION OF FEATURES

public async Task <FileShareRequest > ReceiveFileInformation ()

{

// Receiving file information

_sharedFile = DataSerializer.

DeserializeObject <FileShareRequest >(...) !;

return _sharedFile;

// Error handling omitted

}

SendFileShareResponse After receiving the file information and displaying it to the

user, this method allows the recipient to send a response indicating whether the file is

accepted or declined. This decision is serialized as a FileShareResponse object and

sent back to the sender via the network stream.

public async Task SendFileShareResponse(bool isAccepted)

{

// Check whether the file was accepted or declined

var responseObject =

new FileShareResponse(isAccepted ? FileShareResponseType.ACCEPT

: FileShareResponseType.DECLINE);

await _networkStream

.WriteAsync(responseBytes , 0, responseBytes.Length);

// Error handling omitted

}

ReceiveFile This method handles the actual file reception. It reads the file bytes and

writes them to the target folder. The progress is calculated as a percentage and for-

warded to the user interface.

Ruben Zukić - 100 -

5 IMPLEMENTATION OF FEATURES

public async Task ReceiveFile(string fileSavePath)

{

while (bytesLeftToRead > 0 && !cancelled)

{

...

var bytesRead = await _networkStream.ReadAsync(buffer , ...)

;

if (bytesRead == 0) break;

await fileStream.WriteAsync(buffer , 0, bytesRead);

bytesLeftToRead -= bytesRead;

// Update progress

}

// Error handling omitted

}

Sending Files

The FileSender class is responsible for initiating and executing the file transfer to a

recipient. This class manages multiple steps of the transfer process, from transmitting

the file information to the actual sending of the file content.

ReceiveAcknowledgement This method waits for an acknowledgment response from

the recipient, indicating that they are ready to receive the file. It reads the response and

verifies if it is a positive acknowledgment (ACK).

SendFileInformation Using the method ReceiveFileInformation, which was previously

introduced, file information is received. The SendFileInformation method serves as the

counterpart and sends the file information to the recipient.

In this step, the FileSender transmits details about the file to be sent, including the

file name, size, and a hash value for integrity verification. This data is serialized and

sent to the recipient via the network stream. This method supports both single-file and

multi-file transfers.

- 101 - Ruben Zukić

5 IMPLEMENTATION OF FEATURES

ReceiveFileShareResponse After sending the file information, the sender waits for

a response from the recipient regarding whether the file transfer was accepted. This

method reads the response and verifies if the file transfer can proceed.

SendFileContent This core method is responsible for sending the actual file content.

It opens the file, reads it in blocks, and sends these blocks over the network stream to

the recipient. During the transfer, an optional progress indicator is updated to track the

progress of the transfer.

public async Task SendFileContent(string filePath)

{

// Loop to send the file data.

while ((bytesRead =

await fileStream.ReadAsync(buffer , 0, buffer.Length)) > 0)

{

await _networkStream

.WriteAsync(buffer , 0, bytesRead);

transferredBytes += bytesRead;

var bytes = transferredBytes;

}

// Error handling omitted

}

Ruben Zukić - 102 -

5 IMPLEMENTATION OF FEATURES

5.3 Clipboard

The clipboard is another very important feature of LinkWave. It enables sharing text and

images between different devices.

This feature aims to facilitate seamless switching between devices during work. For

instance, one can compose a text message on a computer and then send it via a phone.

Similarly, images copied on a phone can be pasted into a document on a computer.

The clipboard feature is at least partially available on all operating systems. On

Windows, macOS, and Android, it is possible to copy and receive text and images. On

iOS, it is possible to receive text and images, but only text—not images—can be copied.

On mobile operating systems, the clipboard feature is also implemented via the share

function. This means that on mobile devices, the clipboard cannot be directly accessed

but instead requires using an additional button in the text selection menu.

- 103 - Ruben Zukić

5 IMPLEMENTATION OF FEATURES

5.3.1 Functionality

As mentioned in the file-sharing section, LinkWave uses a combination of a discovery

protocol and TLS to automatically find devices and securely share data between two

devices. After Device A (sender) discovers a compatible device via Bonjour Discovery

and establishes a secure connection via TLS (Transport Layer Security), the following

steps occur:

Figure 45: Clipboard Sharing

1. Request (CLIPBOARD_SHARE): Device A sends a request to Device B (re-

ceiver) to indicate its intention and share the clipboard content.

2. Response (ACK|RST): Device B responds with an ACK to confirm a successful

request or with an RST to reset in case of an error.

3. Send Clipboard Information: Device A then sends information about the clip-

board sharing. This information may include details on how the clipboard content

should be formatted and transferred.

4. Response (ACK|RST): Device B responds to confirm that the clipboard sharing

information has been received.

Ruben Zukić - 104 -

5 IMPLEMENTATION OF FEATURES

5. Send Clipboard Content: Finally, Device A sends the actual clipboard content to

Device B.

- 105 - Ruben Zukić

5 IMPLEMENTATION OF FEATURES

5.3.2 On iOS and macOS

Since macOS and iOS share the codebase for network access, the clipboard functional-

ity is implemented for both platforms together. Apple provides clipboard access through

the NSPasteboard class on macOS and the UIPasteboard class on iOS. These classes

enable copying and reading text and images to and from the clipboard.

Reading the Clipboard To read the clipboard on macOS, a timer is used to check ev-

ery 2 seconds if the clipboard content has changed. The NSPasteboard.general.changeCount

property increments with every change to the clipboard. By storing the current value in

a variable and comparing it with the property’s value, one can determine whether the

clipboard content has changed.

if currentChangeCount != NSPasteboard.general.changeCount {

currentChangeCount = NSPasteboard.general.changeCount

// Clipboard content has changed

}

When the clipboard content changes, the type of the content is checked. The type is

represented as an enum that stores the possible clipboard types and values. The type

is then used to read the respective clipboard content.

let type = NSPasteboard.general.availableType(

from: [.string , .URL , .fileURL , .png , .tiff])

switch type {

case .string:

// Read text from clipboard

case .png:

// Read image from clipboard

} // ... Other types

Afterward, the content is sent to the devices associated with the user’s account as

described in Section 5.3.1. The methods NWConnection.send() and NWConnection.receive(),

described in Section 5.2.2, are used for this purpose.

Ruben Zukić - 106 -

5 IMPLEMENTATION OF FEATURES

Writing to the Clipboard Writing to the clipboard is another feature that can be trig-

gered via the New Connection Handler described in Section 5.1.2. However, the SSL

certificate ensures that only devices associated with the user’s account can access the

clipboard. Due to slight differences between macOS and iOS, two compiler directives

must be used to compile the code for both operating systems.

#if os(macOS)

let pasteBoard = NSPasteboard.general

pasteBoard.clearContents ()

// ...

#elseif os(iOS)

let pasteBoard = UIPasteboard.general

pasteBoard.items = []

// ...

#endif

In the first step, the old content must be cleared from the clipboard. Then the new

content is written to the clipboard. Based on the type of the content, it is written (stored

in the data variable) to the clipboard.

switch type { // on macOS

case .TEXT:

pasteBoard.setString(

String(data: data , encoding: .utf8),

forType: .string

)

case .IMAGE:

pasteBoard.setData(data , forType: .png)

}

switch type { // on iOS

case .TEXT:

pasteBoard.string = String(data: data , encoding: .utf8)

case .IMAGE:

pasteBoard.image = UIImage(data: data)

}

- 107 - Ruben Zukić

5 IMPLEMENTATION OF FEATURES

The type of content is received over the TCP connection, as described in Section

5.3.1, and deserialized into the ClipboardShareRequest class. This class contains the

type of the content and its size in bytes.

Figure 46: UML of ClipboardShareRequest

The data variable is an object of the same-named Data() class. It contains the bytes

of the clipboard content. In the case of text, these are UTF-8 encoded bytes, and in the

case of images, they are the image bytes. Whether it is a PNG or JPEG image does not

matter, as the clipboard on macOS and iOS supports both formats and treats JPEGs as

PNGs. Clipboards on other operating systems also support this ambiguity. Therefore,

only the types .TEXT and .IMAGE are defined.

Ruben Zukić - 108 -

5 IMPLEMENTATION OF FEATURES

5.3.3 On Android

Sharing the Clipboard

Sharing the clipboard works similarly to sharing files. Instead of an image or a file, text

is transferred. The process is illustrated in Figure 47.

Figure 47: Clipboard Sharing Process

Since direct access to the clipboard has been restricted in Android 10 and later,

the PROCESS_TEXT feature of Android is used. This feature allows marked text to be

sent to an app, which can then process it further. In the case of the LinkWave app, a

PROCESS_TEXT intent opens the ClipboardActivity. This activity forwards the text to the

ClipboardViewModel, which uses the ClipboardShareManager to send the text to all

devices.

- 109 - Jan Schäfer

5 IMPLEMENTATION OF FEATURES

override fun onCreate(savedInstanceState: Bundle ?) {

super.onCreate(savedInstanceState)

val devicesState = devicesViewModel.state.value

intent ?.let { i ->

val selectedText = i.getStringExtra(Intent.

EXTRA_PROCESS_TEXT)

clipboardViewModel.shareClipboardText(selectedText ,

devicesState.scannedDevices)

}

finish ()

}

In the above code snippet, the marked text is read from the intent and forwarded

to the ClipboardViewModel. The finish() function ends the activity after the text has

been forwarded. This process is invisible to the user.

fun shareClipboardText(text: String , devices: List <LinkWaveDevice >)

{

for (device in devices) {

viewModelScope.launch {

clipboardShareManager.shareClipboardText(text , device)

}

}

}

The text is then sent as a ByteArray via the NetworkStream to the devices. The

recipient can then copy the text to their clipboard.

val textBytes = text.toByteArray ()

outputStream.write(textBytes)

Jan Schäfer - 110 -

5 IMPLEMENTATION OF FEATURES

Receiving Clipboard Content

Similar to receiving files, receiving text and images in the clipboard should also work

in the background. The reception process is carried out in the LinkWaveService (see

Section 5.5.3) and is illustrated in Figure 48.

Figure 48: Clipboard Sharing Process on Android

When the RequestListener receives a CLIPBOARD_SHARE request, it forwards it to

the ClipboardReceiveManager. The ClipboardReceiveManager is provided with the

NetworkStream, through which it receives the type of the content. For text, the con-

tent is copied to the clipboard using the receiveClipboardText function. For an image,

it is copied to the clipboard using the receiveClipboardImage function.

- 111 - Jan Schäfer

5 IMPLEMENTATION OF FEATURES

Figure 49: UML of ClipboardReceiveManager

receiveClipboardText() This function reads the text from the NetworkStream and copies

it to the clipboard. The following code snippet shows the implementation.

val textBytes = ByteArray(clipboardShareRequest.length)

val textBytesRead = inputStream.read(textBytes)

text = String(textBytes.sliceArray (0 until textBytesRead))

clipboardManager.setPrimaryClip(

ClipData.newPlainText("linkwave_text", text)

)

receiveClipboardImage() This function reads the image from the NetworkStream and

copies it to the clipboard. Similar to file transfer, the image is transmitted in chunks. The

following code snippet shows the implementation.

val uri =

FileProvider.getUriForFile(

androidContext ,

"${androidContext.packageName }. fileprovider",

tempFile

)

val clipData = ClipData.newUri(androidContext.contentResolver , "

LinkWave␣image", uri)

clipboardManager.setPrimaryClip(clipData)

Jan Schäfer - 112 -

5 IMPLEMENTATION OF FEATURES

The Content Provider is necessary to transfer files to other apps and is defined in

the AndroidManifest.xml file. The configuration of the FileProvider is shown in the

following code snippet.

<provider

android:name="androidx.core.content.FileProvider"

android:authorities="${ applicationId }. fileprovider"

android:exported="false"

android:grantUriPermissions="true">

<meta -data

android:name="android.support.FILE_PROVIDER_PATHS"

android:resource="@xml/file_paths" />

</provider >

The FileProvider allows apps to access shared images. Which files are allowed to be

shared is defined in the file_paths.xml file. In this case, only the temporary folder is

defined.

- 113 - Jan Schäfer

5 IMPLEMENTATION OF FEATURES

5.3.4 On Windows

Clipboard Sharing works in principle like File Sharing but with some differences. Here,

the user cannot confirm whether they want to receive the clipboard content. After copy-

ing the content, it is automatically sent only to devices logged in with the same account.

Clipboard Sharing processes and forwards requests in the same way as File Sharing.

Clipboard Sharing is divided into two classes: ClipboardSender and ClipboardReceiver.

ClipboardReceiver

ReceiveTypeAsync This method is the first step in the receiving process and reads

the type of shared content (e.g., text or image) from the network stream. It deserial-

izes the received data into a ClipboardShareRequest object, which contains information

about the type and length of the content. After successfully receiving and deserializ-

ing the content information, the method sends an acknowledgment (ACK) back to the

sender to signal readiness to receive the actual content data.

public async Task ReceiveTypeAsync ()

{

_ = await _networkStream.ReadAsync(receiveTypeBytes);

// Deserialization of received data

await LinkWaveSender.SendCommandAsync(RequestTypes.ACK , ...);

}

Ruben Zukić - 114 -

5 IMPLEMENTATION OF FEATURES

ReceiveClipboardContentAsync This method waits for the transmission of the actual

clipboard content after receiving and confirming the content type. It calls ReceiveClipboardContentBytes

to receive the content bytes. Depending on the type of content, different actions are ex-

ecuted.

public async Task ReceiveClipboardContentAsync ()

{

switch (_shareRequest.ClipboardType)

{

case ClipboardContentType.Text:

_ = _uIFunctionStore.SetLastClipboardReceived(text);

_ = _uIFunctionStore.SetClipboardText(text);

break;

case ClipboardContentType.Image:

// Receiving image data

_ = _uIFunctionStore.SetLastClipboardReceived(checksum)

;

_ = _uIFunctionStore.SetClipboardImage(bytes);

break;

}

}

ReceiveClipboardContentBytes After calling ReceiveClipboardContent, this method

reads the sent content byte by byte and stores it in a byte array. This method ensures

that the entire message, regardless of its size, is received efficiently and completely.

private async Task <byte[]> ReceiveClipboardContentBytes(int

length)

{

...

while (bytesRead < length)

bytesRead += await _networkStream.ReadAsync(buffer , ...));

return buffer;

}

- 115 - Ruben Zukić

5 IMPLEMENTATION OF FEATURES

Writing to the Clipboard Reading and writing to the clipboard on Windows is handled

in C# by the System.Windows.Clipboard class. This class contains static methods for

interacting with the clipboard. To set text, the SetText() method is used.

private async Task SetClipboardTextAsync(string text)

{

System.Windows.Clipboard.SetText(text);

}

When setting images in the clipboard, a slightly more complex approach must be

taken. Although there is a SetImage() method, it only works with bitmaps. This means

that any image formats with transparent backgrounds will lose that transparency. To

work around this, a custom DataObject must be created. This object adds the standard

bitmap field to ensure compatibility with older programs. Additionally, a PNG field is

created, to which the image in the form of a byte array is added. This DataObject is

then copied to the clipboard. As a result, images with transparent backgrounds can

also be copied to the clipboard, provided the receiving program can read the PNG field.

Programs like Microsoft Word, Google Docs, or Photoshop can do this.

private async Task SetClipboardImageAsync(byte[] imageBytes)

{

var dataObject = new System.Windows.DataObject ();

var memStream = new MemoryStream(imageBytes)

var bitmapImage = new BitmapImage ();

bitmapImage.BeginInit ();

bitmapImage.StreamSource = memStream;

bitmapImage.EndInit ();

dataObject.SetData(DataFormats.Bitmap , bitmapImage , true);

dataObject.SetData("PNG", memStream , false);

System.Windows.Clipboard.SetDataObject(dataObject , true);

}

Ruben Zukić - 116 -

5 IMPLEMENTATION OF FEATURES

ClipboardSender

Communication begins with the sending of an initialization command to start the pro-

cess. After sending, the sender waits for an acknowledgment (ACK) from the recipient.

This acknowledgment ensures that the recipient is ready to receive further data. Once

the acknowledgment is received, the clipboard sender transmits detailed information

about the clipboard content. After the second acknowledgment, the actual transfer of

content begins.

public async Task SendAsync(SslStream networkStream)

{

// Sending initialization command

while (_contentBytes.Length > 0)

{

var chunkSize = Math.Min (...);

await networkStream.WriteAsync(_contentBytes , 0, chunkSize)

;

_contentBytes = _contentBytes[chunkSize ..];

}

}

- 117 - Ruben Zukić

5 IMPLEMENTATION OF FEATURES

5.4 User Account

The LinkWave user account is a critical component of the application as it enables user

authentication and authorization.

Since LinkWave devices connect automatically, it is important to ensure that unautho-

rized devices cannot access data. Other alternatives, such as KDE Connect, require

users to manually connect devices. To simplify usage, LinkWave eliminates the need

for manual connection. LinkWave devices connect automatically when they are on the

same network. However, this introduces a security risk, as unauthorized devices could

also be on the same network. To prevent this, a user account is required.

Some features, such as the clipboard, are only available to logged-in users because

they grant significant control over the devices. Other features are also available without

login.

LinkWaveApp user accounts can be created either in the respective apps or on the web

dashboard. Users can register with an email address and password or sign in using a

Google account.

Arshia Reisi - 118 -

5 IMPLEMENTATION OF FEATURES

5.4.1 Functionality

User management is a crucial part of the API as it enables user authentication and

authorization.

The implementation includes managing user accounts, authentication via JSON Web

Tokens (JWT), and the integration of Google OAuth for authentication services.

In addition, two-factor authentication (2FA) is supported to enhance the security of user

accounts.

Figure 50: Users Table

The ’Users’ table in LinkWave’s PostgreSQL database system includes the following

fields:

Database Structure

• Firstname: The user’s first name.

• Lastname: The user’s last name.

• Username: The unique username for login.

• Password: The user’s encrypted password.

- 119 - Arshia Reisi

5 IMPLEMENTATION OF FEATURES

• ProfileImagePath: The file path to the user’s profile picture.

• Email: The user’s email address.

• Role: The user’s role, which defines access permissions.

• CreatedAt: The creation date and time of the user account.

• TwoFactorAuthEnabled: A boolean indicating whether two-factor authentication

is enabled.

• OAuthToken: A token for OAuth authentication procedures.

• TwoFactorAuthSecretKey: A secret key for two-factor authentication.

• Id: The unique ID of the user account.

Each field serves a specific purpose and is critical for authentication, authorization, and

managing user information. The database structure supports strong security measures

to ensure sensitive data, such as passwords and authentication keys, is securely stored.

UUIDs guarantee the uniqueness of each record, while email addresses and profile

images contribute to personal identification of users. Role distribution is essential for

permission management in the system.

Endpoints

In the LinkWave backend, certain endpoints are central to user management as they

form the basis for security and functionality. Among the available endpoints, five are

particularly important for basic functions such as user login and registration, as well as

the implementation and management of two-factor authentication.

LoginWithEmail

The LoginWithEmail function allows users to log in with their email address and pass-

word. Upon successful authentication, a JWT is generated and returned, which serves

as an authentication token for future requests.

Arshia Reisi - 120 -

5 IMPLEMENTATION OF FEATURES

LoginOAuthGoogle

LoginOAuthGoogle handles login via Google OAuth, allowing users to authenticate with

their Google account. After successful authentication through Google, a JWT is also

issued for further use.

Register

The Register function is responsible for registering new users in the system. Users

must provide basic information such as email, password, and their name to create a

new account.

GenerateQrCodeUri

With GenerateQrCodeUri, users can activate two-factor authentication by generating a

QR code, which is scanned using an authenticator app. This adds an additional layer of

security to their account.

ValidateTwoFactorAuthentication

The ValidateTwoFactorAuthentication function validates the code generated by the au-

thenticator app. This step is required to grant access to the system when two-factor

authentication is enabled.

These endpoints are explained in more detail in the following sections.

JSON Web Token

A JSON Web Token (JWT) is a compact, self-contained method for securely transmitting

information between parties as a JSON object. The information is trustworthy because

it is digitally signed. JWTs can be signed using a secret key (with the HMAC algorithm)

or a public/private key pair using RSA or ECDSA. [14]

Structure of a JWT

• Header: The header typically consists of two parts: the type of token, which is

JWT, and the signing algorithm being used, such as HMAC SHA256 or RSA.

- 121 - Arshia Reisi

5 IMPLEMENTATION OF FEATURES

• Payload (Body): The payload contains the claims. Claims are statements about

an entity (typically, the user) and additional metadata. There are three types of

claims: registered, public, and private claims.

• Signature: To create the signature, the encoded header and the encoded payload

must be signed using the algorithm specified in the header and secured with a

secret key.

Figure 51: Structure of a JWT

Usage of JWTs During authentication, when a user successfully logs in with their

credentials, the authentication server returns a JWT. The client stores this token and

sends it with subsequent requests, usually in the Authorization header, to inform the

server that the request is authorized.

Refresh Tokens To enhance user experience while maintaining security, refresh to-

kens are used. An access token typically has a short lifespan. Without a refresh token,

users would need to log in again when it expires. A refresh token allows a new access

token to be obtained without requiring the user to log in again, enabling a seamless user

experience while maintaining security.

Arshia Reisi - 122 -

5 IMPLEMENTATION OF FEATURES

Token Generation

• When generating a new token, claims for users are created, including their ID,

email, role, and token expiration date.

• A JwtSecurityToken is generated and contains the issuer, audience, claims, ex-

piration date, and signing credentials.

• The signing information is constructed using the security key (SymmetricSecu-

rityKey) and the algorithm used, in this case, HMAC SHA256.

• The final token is then encoded into a string and returned.

Refresh Token Generation

• A refresh token is generated by creating a 32-byte random number and converting

it into a Base64 string.

• This token has a longer lifespan than the access token and can be used to obtain

a new access token without requiring user authentication.

Security and Validation

By using claims and strong encryption, LinkWave ensures both the identity of the user

and the integrity of the tokens. The generated tokens comply with security standards

and serve as reliable authentication proofs for the duration of their validity.

Google OAuth

LinkWave integrates Google OAuth to provide users with a seamless, secure, and

simple login experience. This integration utilizes specific libraries to authenticate with

Google’s security servers.

What is OAuth?

Google’s OAuth flow is a process that allows applications to securely access Google

services on behalf of users. The structure of this authentication mechanism is described

below and visualized in a diagram.

- 123 - Arshia Reisi

5 IMPLEMENTATION OF FEATURES

Figure 52: Google Logo

OAuth is an open standard for access delegation that enables users to securely

share private content, such as contact information, over HTTP services. It allows the

application to act on behalf of users without requiring their password. OAuth operates

with tokens that serve as secure authentication keys, specifying and limiting access

rights. It is the preferred method for modern API security and is supported by most

major online service providers. [13]

The OAuth Flow

Requesting Permission At the beginning, the application that wishes to access Google

services must obtain permission from the users. This is done through a URL leading to

a page provided by Google, where users can grant their consent.

The Role of Application Data Important components in this request include:

• Client ID: A unique identifier for the application requesting access.

• Scope: Defines the scope of access the application is requesting.

• Redirect URI: A predefined address to which Google redirects the user after ap-

proval.

Consent and Access Token After the user consents via the Google page, the appli-

cation receives an Authorization Token, which it uses to verify the user’s identity and

request an Access Token in the next step.

Arshia Reisi - 124 -

5 IMPLEMENTATION OF FEATURES

Access Tokens

• Access Token: Enables access to Google services for a limited time.

• Refresh Token: Can be used to obtain new Access Tokens without requiring the

user to log in again.

With the Access Token, the application can act on behalf of the user and access

requested services like Gmail, Google Calendar, Classroom, etc.

Renewing Access After the Access Token expires, the application can use the Re-

fresh Token to obtain a new Access Token without disturbing the user.

Below is a diagram illustrating the Google OAuth flow:

Figure 53: OAUTH Flow

- 125 - Arshia Reisi

5 IMPLEMENTATION OF FEATURES

Two-Factor Authentication

Two-Factor Authentication (2FA) is an enhanced security method that goes beyond tra-

ditional usernames and passwords by requiring a second step of authentication. This

step may involve something the user has, knows, or something biometrically unique.

[15]

Two-Factor Authentication Methods

In Two-Factor Authentication (2FA), various methods are used to verify the user’s iden-

tity. Typically, a One-Time Password (OTP) is used, which can be either time-based

(TOTP) or counter-based (HOTP). These methods utilize cryptographic functions like

HMAC to ensure that each password is unique and cannot be reproduced. [16]

Time-based One-Time Password (TOTP)

• TOTP is an algorithm that generates a temporary password that changes at regu-

lar, short time intervals.

• The authentication servers and the user’s authenticator app are synchronized and

use the current time as the basis for the password.

• TOTPs provide strong protection against replay attacks because even if a pass-

word is intercepted, it quickly becomes invalid.

HMAC-based One-Time Password (HOTP)

• HOTP generates authentication codes based on a secret key and a counter.

• Both the server and the user’s authentication device maintain the same counter,

which is incremented after each use.

• HOTP tokens are not time-dependent, making them useful in situations without a

reliable time source.

Arshia Reisi - 126 -

5 IMPLEMENTATION OF FEATURES

Keyed-Hash Message Authentication Code (HMAC)

• HMAC is a specific type of Message Authentication Code (MAC) that combines a

cryptographic hash function with a secret cryptographic key.

• In 2FA systems, HMAC is used to generate the one-time passwords required for

TOTP and HOTP.

• The use of HMAC ensures the integrity and authenticity of messages (in this case,

the passwords).

Two-Factor Authentication in LinkWave

In LinkWave, two-factor authentication (2FA) has been implemented in the backend to

enhance the security of user accounts. This section describes the technical steps of the

implementation and how users can utilize 2FA.

Two-Factor Authentication Flow

To enable 2FA, users generate a QR code through the web, desktop, or mobile app:

1. Users initiate the 2FA setup in their account settings.

2. A unique secret key is generated on the server side.

3. Using the key, a QR code is created, containing the identification data for the user’s

2FA app.

4. Users scan this QR code with an authenticator app installed on their mobile device.

5. The authenticator app stores the information and begins generating time-based

one-time passwords (TOTP).

- 127 - Arshia Reisi

5 IMPLEMENTATION OF FEATURES

Validating Two-Factor Authentication

During each login attempt, users must provide a TOTP code in addition to their pass-

word:

1. Users enter their password and the TOTP code generated by the authenticator

app into the login interface.

2. The LinkWave server receives the TOTP code and verifies it using the stored se-

cret key.

3. If validation is successful, users are granted access to their account.

Figure 54: 2FA Flow

Arshia Reisi - 128 -

5 IMPLEMENTATION OF FEATURES

5.4.2 On iOS and macOS

The user account is managed in the app on iOS and macOS. Users can register, log in,

and edit their profiles. It is possible to log in using an email address and password or a

Google account. These options are implemented very differently.

Email and Password

Logging in and registering with an email and password is done via a GraphQL connec-

tion to the LinkWave server. The swift-graphql library is used to work with GraphQL.

Documentation for the functions used can be found on the website [2]. This library en-

ables the creation and sending of GraphQL queries and mutations. Additionally, it sup-

ports generating code from GraphQL schemas, which simplifies the use of GraphQL in

Swift. The schema is generated with the following command:

$ swift -graphql https ://api.linkwave.org/graphql/ \

-o generated.swift

Functions and classes are then generated, which can be used with the swift-graphql

library. To log users in, a loginWithEmail request is sent.

let query = Objects.Mutation.loginWithEmail(

email: email ,

password: password)

let request = URLRequest(url: linkWaveHelper.graphqlClient !)

.querying(query)

let task = URLSession.shared.dataTask(with: request)

{ data , _, _ in

guard let result = try? data?. decode(query) else { return }

// Save token

}

- 129 - Ruben Zukić

5 IMPLEMENTATION OF FEATURES

The JWT is now stored in the token variable, which is required for authenticating

further requests. The token is also stored in the Keychain to retain it after restarting the

app while keeping it secure. This is achieved using the KeychainSwift library [3].

let token = result.data!

let keychain = KeychainSwift ()

keychain.set(token , forKey: "JWT")

Registering works conceptually the same way as logging in, except that instead of

the loginWithEmail mutation, a register mutation is sent. This mutation also requires

the username, first name, and last name of the user.

Google Account

The login using a Google account (OAuth) on iOS and macOS is implemented through

the GoogleSignIn library. This library provides a simple signIn function, which guides

the user through the login process in an open browser window. After the user has

logged in, a callback function is called, which retrieves the JWT from the server using

the accessToken.

GIDSignIn.sharedInstance.signIn(withPresenting: mainWindow)

{ signInResult , _ in

guard let result = signInResult else { return }

var accessToken = result.user.accessToken

var query = Objects.Mutation.loginOAuthGoogleAccessToken(

accessToken: accessToken.tokenString)

}

The JWT is then saved in the Keychain again to be used for further requests.

Ruben Zukić - 130 -

5 IMPLEMENTATION OF FEATURES

5.4.3 On Android

User management on Android is handled by the Android app. Here, users can register

and log in with an email and password. The GraphQL API of the LinkWave server is

used for this. The Apollo-Android library is used for communication with the GraphQL

API. This library allows the creation and sending of GraphQL queries and mutations. It

also supports code generation from GraphQL schemas.

Email and Password

To log in users, a loginWithEmail request is sent to the server. This request contains

the user’s email and password. The server’s response includes the JWT token, which

is used for authentication in future requests. The GraphQL request is illustrated in the

following code example.

mutation LoginWithEmail($email: String!, $password: String !) {

loginWithEmail(email: $email , password: $password)

}

Apollo-Android automatically generates a class from this mutation, which contains

the request. This class is used to send the request to the server. The server responds

with the JWT token, which is stored in SharedPreferences. The following code demon-

strates how the request is sent to the server and the response is processed.

val response = apolloClient.mutation(LoginWithEmailMutation(email ,

password)).execute ()

val token = response.data?. loginWithEmail

securePreferences.saveSessionToken(token)

The SecurePreferences class saves the JWT token in the EncryptedSharedPrefer-

ences. SharedPreferences allow data to be stored in a key-value format. Encrypted-

SharedPreferences encrypt the data before storing it. For future requests, the JWT to-

ken is loaded from EncryptedSharedPreferences and added as an Authorization header

to requests to the server via an HTTP-Interceptor.

- 131 - Jan Schäfer

5 IMPLEMENTATION OF FEATURES

fun provideApolloClient(

securePreferences: SecurePreferences

): ApolloClient {

val okHttpClient = OkHttpClient.Builder ()

.addInterceptor { chain ->

val original = chain.request ()

val builder = original.newBuilder ().method(original.

method , original.body)

builder.header("Authorization", "Bearer␣${

securePreferences.getSessionToken ()}")

chain.proceed(builder.build())

}

.build()

return ApolloClient.Builder ()

.serverUrl("https ://api.linkwave.org/graphql/")

.okHttpClient(okHttpClient)

.build()

}

Jan Schäfer - 132 -

5 IMPLEMENTATION OF FEATURES

5.4.4 On Windows

User management on Windows is handled by the Windows app. Here, users can regis-

ter, log in, and edit their profiles. It is possible to log in using an email address and pass-

word or a Google account. For this purpose, the GraphQL API of the LinkWave server

is used. Requests are sent via the GraphQLHttpClient class from GraphQL.Client.

GraphQL queries and mutations are used to perform user actions. To log in users, a

loginWithEmail request is sent, or a LoginOAuthGoogleAccessToken request is used

if users sign in with Google. Upon successful login, the JWT token is stored in Local

Settings.

Registration Process

During the registration process, users enter their personal information, including user-

name, first name, last name, email address, and password. This data is sent to the

server via a GraphQL request. Upon successful registration, the system automatically

initiates the process of generating an SSL certificate for the user’s device. This cer-

tificate is used to authenticate the device’s identity within the network and establish an

encrypted connection to other devices.

The Register mutation is used for registration, sending user data to the server and

starting the registration process. After successful registration, a JWT token is returned,

which is used to authenticate users in future requests. The JWT token is stored in “Local

Settings.”

- 133 - Ruben Zukić

5 IMPLEMENTATION OF FEATURES

public async Task RegisterAsync(User user)

{

string username = UsernameTextBox.Text;

string email = EmailTextBox.Text;

// Additional user data

string password = PasswordBox.Password;

...

var signUpRequest = new GraphQLRequest

{

Query = // GraphQL Query to register user

Variables = // Variables for the query

};

var signUpResponse = await graphQLClient.SendQueryAsync <

SignUpResponseData >(signUpRequest);

deviceCertificate = await Task.Run(async () => await

Certificate.CompleteCertificateSigningProcess ());

// Further steps

App.GetService <ILocalSettingsService >().SaveSettingAsync("

JWTToken", loginResponse.Data.Token)

}

Login Process

Users can log in using their email address and password or their Google account via

Google OAuth. During the login process, users enter their credentials, which are sent to

the server to verify their identity. If the credentials are correct, a JWT token is returned

and used to authenticate users for future requests. After a successful login, the JWT

token is stored in the “Local Settings.”

If the user already has an account but logs in on a device for the first time, their device

is automatically registered, and an SSL certificate is generated for the device.

The LoginWithEmail mutation is used for user login.

private async void LoginButton_Click(object sender , Microsoft.UI.

Xaml.RoutedEventArgs e)

Ruben Zukić - 134 -

5 IMPLEMENTATION OF FEATURES

{

var loginRequest = new GraphQLRequest

{

Query = // GraphQL query to log in the user ,

Variables = // Variables for the query

};

var loginResponse = await graphQLClient.SendQueryAsync <

LoginResponse >(loginRequest);

}

Google OAuth is used for user login. Due to its complexity and the many steps involved,

not all methods are detailed here.

string authorizationRequest = // Authorization request

// Launch browser with the authorization request

private async Task <string?> performCodeExchangeAsync(string code ,

string code_verifier)

{

var loginRequest = new GraphQLRequest

{

Query = // GraphQL query to log in the user ,

Variables = // Variables for the query

};

GraphQLResponse <LoginResponse > loginResponse;

loginResponse = await graphQLClient.SendQueryAsync <

LoginResponse >(loginRequest);

return loginResponse.Data.Token;

}

// Additional steps

- 135 - Ruben Zukić

5 IMPLEMENTATION OF FEATURES

5.4.5 On the Web

The web dashboard allows users to manage their accounts. Here, they can register, log

in, and edit their profiles. It is possible to log in using an email address and password or

a Google account. For this, the GraphQL API of the LinkWave server is used.

The library graphql-request [18] is used to communicate with the GraphQL API. The

dashboard is written in SvelteKit. Since SvelteKit is a server-side rendering framework,

the GraphQL API is directly called from the server. The SvelteKit server acts as a proxy

for the GraphQL API.

Email and Password

To log in users, a loginWithEmail request is sent to the server. This request contains

the user’s email and password. The email and password are sent via form actions to the

SvelteKit server. The server sends the request to the LinkWave server and receives the

JWT token in return. This token is stored in a cookie for future requests.

const loginRes = await gqlClient.request(loginWithEmailMutation , {

email: form.data.email ,

password: form.data.password

});

const sessionToken = loginRes.loginWithEmail;

event.cookies.set(’sessionToken ’, sessionToken , {

httpOnly: true ,

maxAge: 60 * 60 * 24 * 7,

path: ’/’,

sameSite: ’lax’,

secure: !dev

});

• httpOnly: The cookie cannot be accessed via client-side JavaScript. This en-

hances security as the JWT token cannot be stolen through XSS attacks.

Jan Schäfer - 136 -

5 IMPLEMENTATION OF FEATURES

• maxAge: The cookie expires after one week. Users will need to log in again after

this period.

• path: The cookie is available across the entire website.

• secure: The cookie is only sent over HTTPS when the website is in production

mode.

Google Account

Logging in with a Google account (OAuth) on the web dashboard works via the google-auth-library.

Users are redirected to the Google OAuth page, where they can log in with their Google

account. After logging in, they are redirected to a callback URL containing the autho-

rization code as a query parameter. This authorization code is sent to the LinkWave

GraphQL API.

google: async () => {

const redirectUri = googleOAuthClient.generateAuthUrl ({

accessType: ’offline ’,

scope: [

’https ://www.googleapis.com/auth/userinfo.email’,

’https ://www.googleapis.com/auth/userinfo.profile ’

]

});

return redirect (302, redirectUri);

}

The callback URL is defined on the SvelteKit server. SvelteKit provides the ability to

define so-called server routes, which are simple REST endpoints. After users log in with

their Google account, they are redirected to such a server route. This route reads the

authorization code from the query parameters and sends it to the LinkWave GraphQL

API.

export const GET: RequestHandler = async (event) => {

const code = event.url.searchParams.get(’code’);

- 137 - Jan Schäfer

5 IMPLEMENTATION OF FEATURES

const loginRes = await gqlClient.request(

loginWithGoogleDocument , {

authorizationCode: code

});

const sessionToken = loginRes.loginOAuthGoogle;

setSessionCookie(event , sessionToken);

return redirect (302, ’/’);

};

Jan Schäfer - 138 -

5 IMPLEMENTATION OF FEATURES

5.4.6 On the Server

JWT Implementation

LinkWave implements authentication using JSON Web Tokens (JWT) on the .NET plat-

form. The implementation uses core classes from the System.IdentityModel.Tokens.Jwt

package and supporting security classes.

JwtProvider Class The JwtProvider class is responsible for generating JWTs and

refresh tokens. It is designed to obtain settings from the JwtSettings configuration and

apply them to generate tokens.

private JwtSettings _settings;

public JwtProvider(IOptions <JwtSettings > settings)

{

_settings = settings.Value;

}

public string GenerateToken(User user)

{

var claims = new[]

{

new Claim("UserId", user.Id.ToString ()),

new Claim(ClaimTypes.Email , user.Email),

...

};

var token = new JwtSecurityToken(

issuer: _settings.Issuer ,

audience: _settings.Audience ,

...

);

var tokenValue = new JwtSecurityTokenHandler ().WriteToken(token

);

return tokenValue;

}

- 139 - Arshia Reisi

5 IMPLEMENTATION OF FEATURES

OAuth Implementation

LinkWave uses the Google OAuth API for authentication services to ensure secure ver-

ification of user identities and the safe retrieval of their information.

Token Verification and User Data Retrieval

The GoogleOAuth class encapsulates the logic for interacting with Google’s OAuth 2.0

endpoint. The main process involves:

1. Creating a RestClient targeting "https://oauth2.googleapis.com".

2. Configuring a RestRequest to request the token via the POST method.

3. Using application data such as redirectUri, clientId, and clientSecret, dy-

namically loaded from settings based on the clientType.

4. Returning a response from the Google server as a string.

Below is a code snippet demonstrating the verification of a Google token:

public async Task <string?> VerifyGoogleTokenAsync (...)

{

...

RestClient client =

new RestClient("https :// oauth2.googleapis.com");

RestRequest request = new RestRequest("token", Method.Post);

...

return response.Content;

}

Adjustments for Mobile OAuth Authentication

The LoginOAuthGoogleAccessToken method was specifically implemented to support

the OAuth process on mobile devices, as these devices only work with access tokens

and do not return an authorization code.

Arshia Reisi - 140 -

5 IMPLEMENTATION OF FEATURES

Summary of Login Processes

Two primary methods, LoginOAuthGoogle and LoginOAuthGoogleAccessToken, allow

users to log in via Google OAuth. The standard process uses the authorization code,

while the alternative method directly works with the access token.

public async Task <string?> LoginOAuthGoogle (...)

{

...

GoogleTokenResponse accessToken = ...

Database.Models.User? userData =

_googleOAuth.GetUserData(accessToken.AccessToken);

...

}

public async Task <string?> LoginOAuthGoogleAccessToken (...)

{

...

Database.Models.User userData =

_googleOAuth !. GetUserData(accessToken);

...

}

In both cases, the user data is extracted from the Google account information and

stored in the database. Subsequently, a JWT is generated for the users and returned,

allowing them to authenticate themselves.

Two-Factor Authentication Implementation

The technical implementation on the server is carried out through two main functions:

public async Task <string > GenerateQrCodeUri (...)

{

var twoFactorAuthenticator = new TwoFactorAuthenticator ();

var secretKey = Utilities.GenerateRandomString (32).Result;

...

- 141 - Arshia Reisi

5 IMPLEMENTATION OF FEATURES

// Generate QR code

...

return setupInfo.QrCodeSetupImageUrl;

}

public async Task <bool > ValidateTwoFactorAuthentication (...)

{

...

// Validation of the TOTP code

...

return twoFactorAuthenticator.ValidateTwoFactorPIN(secretKey ,

token);

}

Arshia Reisi - 142 -

5 IMPLEMENTATION OF FEATURES

5.5 Background Execution

Background execution is a very important but invisible feature for the user. It allows

the app to continue running in the background, receiving and sending data. LinkWave

should feel like an integral part of the operating system for users.

Requests for file transfers should also be processed without the app being open.

If a user wants to send a file, they should be able to do so even if the app is closed.

Additionally, the clipboard should be shared without any interaction with the app. Ideally,

a user should not even notice that the app is running in the background. The app is

essentially only needed for configuration purposes.

However, a user should be aware that the app is running in the background. It should

also be easy to completely close the app or open the settings. A user should be able to

use the app as an extension of the operating system, creating an experience similar to

that of an ecosystem.

- 143 - Ruben Zukić

5 IMPLEMENTATION OF FEATURES

5.5.1 On iOS

The implementation of background execution on iOS is not included in the current ver-

sion of LinkWave. This is because apps on iOS devices operate within a sandbox. Apple

does not allow apps to run continuously in the background outside of this sandbox.

Apple requires apps to use the background update paradigm. This means that apps

define an update function, which is called by iOS at regular intervals. This interval can be

dynamically adjusted by iOS. Within this function, apps are expected to update data and

send notifications before being put back to sleep. (see Apple Developer Documentation

[5])

Since LinkWave is designed to continuously transfer data, putting it to sleep would

severely limit its functionality. Therefore, implementing background execution on iOS is

not feasible. However, users can still utilize all app features while the app is open.

5.5.2 On macOS

Unlike iOS, macOS allows for the implementation of background processes, even within

a sandbox. This is achieved by ensuring that a UI element is continuously present. A

menu bar icon can be used as the UI element (see Chapter 3.2). This icon also allows

users to close the app or open the settings via a context menu. A menu bar icon can be

easily created using the MenuBarExtra element in a SwiftUI view.

MenuBarExtra {

MenuBarExtraContent () // Content of the context menu

} label: {

Image("menubar -icon") // Menu bar icon image

}

Ruben Zukić - 144 -

5 IMPLEMENTATION OF FEATURES

5.5.3 On Android

On Android, long-running background processes are implemented using Services. There

are two types of services: foreground services and background services. Since Android

8.0 (API Level 26), restrictions on background services have been introduced to improve

battery life. These restrictions have essentially made background services obsolete. In-

stead, foreground services should be used, which display a notification to indicate that a

service is running in the background. The LinkWaveService is a foreground service and

includes functions to be executed in the background, such as receiving files, receiving

shared clipboard content, and advertising the device on the network via Bonjour. The

following figure shows the class diagram of the LinkWaveService.

Figure 55: LinkWaveService Class Diagram

The onStartCommand() function is called when the service receives an Intent. This

Intent can either be a START or STOP action. As the names suggest, the service is started

with a START action and stopped with a STOP action.

start() In the start() function, the BonjourAdvertiser is started, advertising the de-

vice on the network, and the RequestListener, which waits for requests from other

devices, is launched. Additionally, a notification is created to signal to the user that the

- 145 - Jan Schäfer

5 IMPLEMENTATION OF FEATURES

service is running in the background.

Figure 56: LinkWaveService Notification

stop() In the stop() function, the BonjourAdvertiser and the RequestListener are

stopped. All coroutines running in the service are canceled, and the notification is re-

moved.

Jan Schäfer - 146 -

5 IMPLEMENTATION OF FEATURES

5.5.4 On Windows

Similar to macOS, background processes can be implemented on Windows using a tray

icon. This icon is displayed in the taskbar and allows users to close the app or open

the settings. The tray icon is created using the NotifyIcon class. This class enables an

icon to be displayed in the taskbar and respond to user interactions.

var trayIcon = new NotifyIcon ();

trayIcon.Text = "LinkWave";

trayIcon.Icon = new System.Drawing.Icon(Path.Combine(

AppContext.BaseDirectory , "Assets/TrayIcon.ico"));

trayIcon.Visible = true;

To create a context menu, the ContextMenuStrip class is used. This menu is as-

signed to the NotifyIcon and is displayed when users right-click on the icon.

var trayMenu = new ContextMenuStrip ();

trayMenu.Items.Add("Open", null , OnOpenWindow);

trayMenu.Items.Add("Open␣Settings", null , OnOpenSettings);

trayMenu.Items.Add("Send␣File", null , OnOpenSendFile);

trayMenu.Items.Add("Quit", null , OnQuit);

trayIcon.ContextMenuStrip = trayMenu;

By overriding the Closed method, it is ensured that closing the main window does

not automatically terminate the app. In this method, the main window is only hidden

instead of closed. Additionally, the operating system is informed that the operation was

successful, preventing the app from being terminated by the OS.

private void MainWindow_Closed(object sender , WindowEventArgs e)

{

e.Handled = true;

this.Hide();

}

- 147 - Ruben Zukić

5 IMPLEMENTATION OF FEATURES

5.6 Encryption

Encryption is a very important part of LinkWave. Since LinkWave is intended to be used

in insecure networks, such as free Wi-Fi in cafés, it is crucial that the data is transmitted

securely. It must not be possible for an attacker to intercept files sent via LinkWave.

Additionally, it should not be apparent when files are being transferred or what files are

being sent.

At the same time, the data should be transferred very quickly, without noticeable de-

lay. Therefore, the encryption must be very efficient. Additionally, the encryption should

be based on a widely used standard to ensure secure and identical implementation

across all platforms.

LinkWave uses TCP for all connections. However, TCP does not handle data en-

cryption. Thus, LinkWave itself must ensure encryption.

Ruben Zukić - 148 -

5 IMPLEMENTATION OF FEATURES

5.6.1 Functionality

LinkWave has its own Certificate Authority (CA), which is used to sign certificates. These

certificates are utilized to encrypt communication between devices. This process is

illustrated in the following diagram. It is important to note that steps one and two are

only performed during the initial login or registration on a device. The certificates are

then stored securely on the device, such as in the Certificate Store on Windows or

the Keychain on macOS. These certificates are later used to encrypt communication

between devices.

Figure 57: SSL/TLS

1. CSR Creation: Devices A and B generate a Certificate Signing Request (CSR)

and send it to the server.

2. CSR Signing: The server signs the CSR and issues an SSL certificate, which is

sent back to Devices A and B.

3. TLS Handshake: Using the received certificates, Devices A and B perform a TLS

handshake. Certificates are exchanged and validated.

- 149 - Ruben Zukić

5 IMPLEMENTATION OF FEATURES

4. Symmetric Key Exchange: During the handshake, a symmetric encryption key

is generated.

5. Start of Encrypted Communication: All subsequent data is transmitted en-

crypted with the symmetric key.

6. Connection Termination: After data transfer, the connection is securely termi-

nated while maintaining the security of the transferred data.

What is SSL/TLS?

About SSL and TLS SSL and TLS are cryptographic protocols developed to en-

able secure data transmission over insecure networks such as the Internet. Originally

developed by Netscape, SSL quickly became the standard for secure web communi-

cation before being replaced by TLS, its improved and more secure successor. Both

protocols provide mechanisms for encrypting and authenticating data exchanged be-

tween web browsers and web servers and are also used in other protocols like email,

VoIP, and instant messaging.

The SSL/TLS Handshake Establishing an SSL/TLS-secured connection is a multi-

step process known as the “Handshake.” This process lays the foundation for secure

communication by verifying the identity of the communication partners and establishing

a shared encryption key.

Agreement In the first step of the handshake, the client and server agree on the

protocol version to be used and select algorithms for encryption and authentication.

This selection ensures that both parties use the same cryptographic standards, which

are essential for secure data transmission.

Key Exchange After agreeing on the protocols and algorithms, the communication

partners exchange key information. This step often involves authenticating the server

(and sometimes the client) using certificates. Certificates issued by a trusted Certifi-

cation Authority (CA) enable the parties to verify each other’s identity and generate a

shared symmetric encryption key.

Ruben Zukić - 150 -

5 IMPLEMENTATION OF FEATURES

Encrypted Communication With the successful completion of authentication and

key exchange, encrypted communication begins over the secured channel. All transmit-

ted data is encrypted using the agreed-upon symmetric key, ensuring confidential and

integral data transmission.

The Importance of Certificates Certificates play a central role in the SSL/TLS

handshake. They contain the certificate holder’s public key and identity information

and are signed by a Certification Authority. These certificates are used to verify the

server’s identity and prevent man-in-the-middle attacks, where attackers attempt to in-

tercept communication.

Source: [8]

Implementation

The encryption process is explained in detail below:

- 151 - Ruben Zukić

5 IMPLEMENTATION OF FEATURES

5.6.2 On iOS and macOS

Encryption on iOS and macOS is achieved using SSL/TLS certificates. These can be

easily passed to an NWParams object and attached to an NWConnection. This object is

then used to establish a connection to a server, which is automatically encrypted.

The first step involves generating a public-private key pair. This can be done using

the SecKeyCreateRandomKey function, which also stores the key pair in the Keychain.

let tag = tlsKeysTag.data(using: .utf8)!

let attributes: [String: Any] = [

kSecAttrKeyType as String: kSecAttrKeyTypeRSA ,

kSecAttrKeySizeInBits as String: 2048,

kSecPrivateKeyAttrs as String: [

kSecAttrIsPermanent as String: true ,

kSecAttrApplicationTag as String: tag ,

],

]

var error: Unmanaged <CFError >?

guard let privateKey = SecKeyCreateRandomKey(attributes as

CFDictionary , &error) else { return }

let publicKey = SecKeyCopyPublicKey(privateKey)

In the second step, a certificate must be generated and signed by the server. This

certificate is then used for encryption. A signing request is known as a CSR (Certificate

Signing Request). This CSR is created using the CertificateSigningRequest library.

The CSR is sent to the server, which signs it and sends it back. The signCertificate

mutation is used for this purpose.

Ruben Zukić - 152 -

5 IMPLEMENTATION OF FEATURES

let csr = CertificateSigningRequest(

commonName: commonName ,

organizationName: organizationName ,

organizationUnitName: organizationName , countryName: countryName ,

keyAlgorithm: algorithm

)

let publicKeyBits =

SecKeyCopyExternalRepresentation(publicKey , nil)! as Data

let builtCSR = csr.buildCSRAndReturnString(

publicKeyBits , privateKey: privateKey , publicKey: publicKey)

var query = Objects.Mutation.signCertificate(csrPem: builtCSR)

This certificate is stored in the Keychain to be used later for encryption. This can

be achieved with the SecItemAdd function. The certificate must also be labeled for easy

retrieval.

guard let derData = Data(base64Encoded: pemBody) else {

return false }

guard let certificate = SecCertificateCreateWithData(nil , derData

as CFData) else {

return false }

let addquery: [String: Any] = [

kSecClass as String: kSecClassCertificate ,

kSecValueRef as String: certificate]

var status = SecItemAdd(addquery as CFDictionary , nil)

if status == errSecSuccess { } else { return }

status = SecCertificateSetPreferred(

certificate , TLSCertLabel as CFString , nil)

- 153 - Ruben Zukić

5 IMPLEMENTATION OF FEATURES

To establish an encrypted connection, a TLSOptions object must first be created.

This object contains the certificates used for encryption. It also specifies the validation

of certificates from other parties.

let identity = retrieveIdentityFromKeychain ()

let tlsOptions = NWProtocolTLS.Options ()

guard let os_sec_identy = sec_identity_create(identity) else

{ return }

sec_protocol_options_set_local_identity(

tlsOptions.securityProtocolOptions , os_sec_identy)

sec_protocol_options_set_min_tls_protocol_version(

tlsOptions.securityProtocolOptions , .TLSv12)

sec_protocol_options_set_verify_block(

tlsOptions.securityProtocolOptions ,

{ sec_protocol_metadata , sec_trust , sec_protocol_verify_complete in

// Validate certificate

}, DispatchQueue.main)

In the function for certificate verification, the certificate is sent to the server. The

server then responds with whether the certificate is valid. If the certificate is valid, the

connection is established. Otherwise, the connection is terminated. This is achieved

using the isCertificateValid query.

let secTrust = sec_trust_copy_ref(sec_trust).takeRetainedValue ()

let serverCertificates = SecTrustCopyCertificateChain(secTrust)

let serverCertificate = serverCertificates [0] as SecCertificate

let pemCert = convertToPEMCertificate(serverCertificate)

let query = Objects.Query.isCertificateValid(certPem: pemCert)

Using these TLSOptions, an NWConnection can now be created. This connection is

encrypted and can be used for data transmission.

let tlsOptions = getTLSOptions ()

let params = NWParameters(tls: tlsOptions , tcp: .init())

let connection = NWConnection(to: endpoint , using: params)

Ruben Zukić - 154 -

5 IMPLEMENTATION OF FEATURES

5.6.3 On Android

Encryption on Android is achieved by using SSL/TLS certificates. These certificates are

used to encrypt communication between devices. The process begins with generating

a key pair and creating a CSR (Certificate Signing Request). This CSR is sent to the

server using the SignCertificate mutation, where it is signed, and an SSL certificate is

issued. This certificate is then stored on the device and used to encrypt communication.

mutation SignCertificate($csrPem: String !) {

signCertificate(csrPem: $csrPem)

}

Key Generation

The SSLHelper object provides methods for key generation and certificate requests. The

generateAndStoreKeyPair() method generates a key pair and stores it in the Android

KeyStore. The generatePemCsr method creates a certificate request and returns it as a

PEM string.

val keyPair = generateAndStoreKeyPair("linkwave_keypair")

val subject =

X500Name("CN=${LocalDeviceInfo.name},␣O=linkwave.org")

val csrBuilder = JcaPKCS10CertificationRequestBuilder(

subject ,

keyPair.public

)

val signer = JcaContentSignerBuilder("SHA256withRSA").build(keyPair

.private)

val csr = csrBuilder.build(signer)

return csrToPem(csr)

- 155 - Jan Schäfer

5 IMPLEMENTATION OF FEATURES

Certificate Signing

To sign the certificate request, the SignCertificate mutation is sent to the server. The

server signs the request and returns the signed certificate as a PEM string.

val response = apolloClient.mutation(SignCertificateMutation(csr))

.execute ()

val signedCertificate = response.data?. signCertificate ?: throw

Exception("No␣signed␣certificate␣found")

SSLHelper.saveSignedCertificateToKeystore(signedCertificate)

The signed certificate is saved in the Android KeyStore and can be used for encryp-

tion of communication.

Encrypted Communication

Encrypted communication is achieved through the use of the SSLContext object. This

object is initialized with the signed certificate and can then be used to create SSLSocket

objects. The following code shows the creation of an SSLContext object with the signed

certificate.

val privateKeyEntry = SSLHelper.getPrivateKeyEntry ()

val keyManagerFactory = KeyManagerFactory.getInstance(

KeyManagerFactory.getDefaultAlgorithm ()).apply {

init(KeyStore.getInstance(KeyStore.getDefaultType ()).apply {

load(null)

setKeyEntry("alias", privateKeyEntry.privateKey , null ,

privateKeyEntry.certificateChain)

}, null)

}

val sslContext = SSLContext.getInstance("TLS").apply {

init(keyManagerFactory.keyManagers , null , null)

}

Now the SSLContext object can be used to create an SSLFactory, which can then be

used to create SSLSocket objects. val sslSocketFactory = sslContext.socketFactory val

Jan Schäfer - 156 -

5 IMPLEMENTATION OF FEATURES

sslSocket = sslSocketFactory.createSocket() as SSLSocket

This SSLSocket can then be used for secure communication with other devices.

val outputStream = sslSocket.outputStream

val inputStream = sslSocket.inputStream

outputStream.write("Hello ,␣World!".toByteArray ())

val response = inputStream.read()

- 157 - Jan Schäfer

5 IMPLEMENTATION OF FEATURES

5.6.4 On Windows

Figure 58: UML Certificate

Certificate Class

The Certificate class in LinkWave includes methods for generating certificate signing

requests (CSR), interacting with the GraphQL API to sign the requests, and validating

certificates.

The CompleteCertificateSigningProcess method coordinates the creation and sign-

ing of a certificate, while the Validate method checks the validity of the received certifi-

cate.

public static async Task <X509Certificate2 >

CompleteCertificateSigningProcess ()

{

var cert = GenerateCertificateSigningRequest ();

var signedCertPem = await SendCsrForSigning(cert.csr);

var signedCertBytes = PemToDer(signedCertPem);

var importedCert =

ImportSignedCertificate(signedCertBytes , cert.privateKey ,

GenRandomPassword ());

return importedCert;

}

public static async Task <bool > Validate(X509Certificate2 cert)

Ruben Zukić - 158 -

5 IMPLEMENTATION OF FEATURES

{

var certPem = ConvertToPem(cert);

return await ValidateCertificateByServerAsync(certPem);

}

1. Certificate Signing Request (CSR): This process describes the request for a

certificate by a device. A certificate request is sent to the Certification Authority

(CA). After verification, the CA signs the request and issues a certificate, which

the device uses to authenticate its identity. [11]

2. X509Certificate2: This class is part of the .NET library and is used to manage

X.509 certificates. Its functions include importing, exporting, and validating certifi-

cates. [12]

SSL Class

The SSL class is responsible for establishing and ensuring SSL/TLS connections. It

includes methods for both the server and the client to perform SSL handshakes and

establish a secure connection.

public static async Task <SslStream >

AcceptAndAuthenticateClientAsync (...)

{

TcpClient client = await listener.AcceptTcpClientAsync ();

SslStream sslStream = new SslStream(client.GetStream (),

leaveInnerStreamOpen: false ,

new RemoteCertificateValidationCallback(ValidateCertificate)

,...);

await sslStream.AuthenticateAsServerAsync(serverCertificate ,

...);

return sslStream;

}

- 159 - Ruben Zukić

5 IMPLEMENTATION OF FEATURES

5.6.5 On the Server

GraphQL Endpoints

CSR Signing

On the server, the SignCertificate mutation receives a CSR associated with a device

and returns the signed certificate string. The actual signing is performed by the SignCsr

method in the CAServer class.

public async Task <string > SignCertificate (..., string csrPem)

{

var device = await dbContext.Devices.

FirstOrDefaultAsync(x => x.Id == deviceId);

if (device == null) return null;

string signedCert = LinkWaveServices.

Utilities.Security.CAServer.SignCsr(csrPem);

return signedCert;

}

public static string SignCsr(string csrPem)

{

Pkcs10CertificationRequest csr = ParseCsr(csrPem);

X509V3CertificateGenerator certGen = new

X509V3CertificateGenerator ();

certGen.SetPublicKey(csr.GetPublicKey ());

certGen.AddExtension(X509Extensions.AuthorityKeyIdentifier ,

...);

certGen.AddExtension(X509Extensions.BasicConstraints , ...);

X509Certificate signedCert = certGen.Generate (...);

return ConvertToPem(signedCert);

}

Arshia Reisi - 160 -

5 IMPLEMENTATION OF FEATURES

Certificate Validation

On the server side, the ValidateCertificate method is used to verify the validity of a

certificate.

The ValidateCertificate method takes a certificate as a PEM string and returns a

boolean value indicating whether the certificate is valid.

public bool IsCertificateValid(string certPem)

{

return LinkWaveServices.Utilities.

Security.CA.ValidateCertificate(certPem);

}

- 161 -

6 CONCLUSION

6 Conclusion

With AirDrop, Apple revolutionized the interoperability of devices. Apple devices con-

stantly exchange data in the background. When something is copied to the clipboard

on one device, it can magically be pasted on another device. The variety of devices

and operating systems, as well as Apple’s monopolistic behavior, significantly hinder

interoperability between Apple devices and those of other manufacturers.

LinkWave brings these features in the form of native apps to the four major platforms:

Windows, macOS, Android, and iOS. Similar to AirDrop, files, texts, and images can

be seamlessly exchanged between different devices. Through its local functionality,

LinkWave makes data exchange much faster and more secure than existing cloud al-

ternatives. Central to the platform-independent architecture is the ability to deliver a

consistent and intuitive user experience, while ensuring high security standards through

end-to-end encryption. The application leverages cutting-edge technologies like SwiftUI

and Jetpack Compose to optimize integration and functionality across platforms.

Looking ahead, LinkWave could be further developed to support more device types and

platforms, further enhancing the app’s universal accessibility and usefulness. Future

developments could focus on increasing data transfer efficiency and expanding the ap-

plication with additional features that better meet users’ needs.

- 162 -

LIST OF FIGURES

List of Figures

1 iOS LinkWave App . 12

2 iOS Share Extension . 13

3 macOS LinkWave App . 14

4 macOS Share Extension . 15

5 macOS Menu Bar Icon . 15

6 Android LinkWave App . 16

7 Android Share Extension . 17

8 Selection Menu . 18

9 Windows LinkWave App . 19

10 Windows Share in Explorer . 20

11 Windows Share Window . 20

12 Windows System Tray Icon . 21

13 Windows System Tray Menu . 21

14 LinkWave Dashboard . 22

15 WinUI Logo . 25

16 SwiftUI Logo . 27

17 Jetpack Compose Logo . 29

18 Svelte Logo . 30

19 GraphQL Logo . 31

20 Bonjour Logo . 34

21 macOS .dmg Installer . 39

22 OS - Features . 46

23 UML of LinkWaveService . 48

24 MVVM Architecture . 49

25 Packaged App Installation . 51

26 Backend Architecture . 56

27 Device Discovery . 62

28 UML of LinkWaveDevice . 66

29 UML of BonjourController and BonjourAdvertiser 68

- 163 -

LIST OF FIGURES

30 Process of Device Discovery . 68

31 UML of DiscoveryListener . 70

32 Process of Advertising the Device . 73

33 UML of RegistrationListener . 74

34 UML Discovery . 75

35 UML Advertisement . 76

36 Devices Table . 77

37 File Sharing . 82

38 File Transfer Process on Android . 87

39 UML of FileSendManager . 90

40 UML of FileTransferOutgoing . 91

41 File Transfer Process on Android . 93

42 UML of RequestListener . 94

43 UML of FileReceiveManager and FileActionReceiver 94

44 UML LinkWaveSender . 97

45 Clipboard Sharing . 104

46 UML of ClipboardShareRequest . 108

47 Clipboard Sharing Process . 109

48 Clipboard Sharing Process on Android . 111

49 UML of ClipboardReceiveManager . 112

50 Users Table . 119

51 Structure of a JWT . 122

52 Google Logo . 124

53 OAUTH Flow . 125

54 2FA Flow . 128

55 LinkWaveService Class Diagram . 145

56 LinkWaveService Notification . 146

57 SSL/TLS . 149

58 UML Certificate . 158

- 164 -

LIST OF TABLES

List of Tables

1 Supported Features on Different Operating Systems 8

- 165 -

REFERENCES

References

[1] WinUI Microsoft Documentation https://learn.microsoft.com/en-us/windows/

apps/winui/

[2] Swift GraphQL https://swift-graphql.com/introduction

[3] KeychainSwift https://github.com/evgenyneu/keychain-swift

[4] Jetpack Compose https://developer.android.com/develop/ui/compose

[5] Apple Background Updates https://developer.apple.com/documentation/

uikit/app_and_environment/scenes/preparing_your_ui_to_run_in_the_

background/using_background_tasks_to_update_your_app

[6] Kotlin Flow https://kotlinlang.org/docs/flow.html

[7] Kotlin Serialization https://kotlinlang.org/docs/serialization.html

[8] TLS/SSL https://www.cloudflare.com/learning/ssl/

transport-layer-security-tls/

[9] Chilli Cream https://chillicream.com/docs/hotchocolate/v13

[10] Microsoft SSLStream Documentation https://learn.microsoft.com/en-us/

dotnet/api/system.net.security.sslstream?view=net-8.0

[11] Microsoft CSR Documentation https://learn.microsoft.com/en-us/dotnet/

api/system.security.cryptography.x509certificates.certificaterequest.

createsigningrequest?view=net-8.0

[12] Microsoft X509Certificate2 Documentation https://learn.microsoft.com/

en-us/dotnet/api/system.security.cryptography.x509certificates.

x509certificate2?view=net-8.0

[13] Google OAuth https://developers.google.com/identity/protocols/oauth2

[14] JWT https://jwt.io/introduction

- 166 -

https://learn.microsoft.com/en-us/windows/apps/winui/
https://learn.microsoft.com/en-us/windows/apps/winui/
https://swift-graphql.com/introduction
https://github.com/evgenyneu/keychain-swift
https://developer.android.com/develop/ui/compose
https://developer.apple.com/documentation/uikit/app_and_environment/scenes/preparing_your_ui_to_run_in_the_background/using_background_tasks_to_update_your_app
https://developer.apple.com/documentation/uikit/app_and_environment/scenes/preparing_your_ui_to_run_in_the_background/using_background_tasks_to_update_your_app
https://developer.apple.com/documentation/uikit/app_and_environment/scenes/preparing_your_ui_to_run_in_the_background/using_background_tasks_to_update_your_app
https://kotlinlang.org/docs/flow.html
https://kotlinlang.org/docs/serialization.html
https://www.cloudflare.com/learning/ssl/transport-layer-security-tls/
https://www.cloudflare.com/learning/ssl/transport-layer-security-tls/
https://chillicream.com/docs/hotchocolate/v13
https://learn.microsoft.com/en-us/dotnet/api/system.net.security.sslstream?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.net.security.sslstream?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography.x509certificates.certificaterequest.createsigningrequest?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography.x509certificates.certificaterequest.createsigningrequest?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography.x509certificates.certificaterequest.createsigningrequest?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography.x509certificates.x509certificate2?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography.x509certificates.x509certificate2?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography.x509certificates.x509certificate2?view=net-8.0
https://developers.google.com/identity/protocols/oauth2
https://jwt.io/introduction

REFERENCES

[15] Two Factor Authentication https://learn.microsoft.com/de-de/aspnet/core/

security/authentication/mfa?view=aspnetcore-8.0

[16] HOTP vs TOTP https://rublon.com/blog/hotp-totp-difference/

[17] The Bonjour Protocol https://developer.apple.com/library/archive/

documentation/Cocoa/Conceptual/NetServices/Introduction.html

[18] GraphQL Request https://www.npmjs.com/package/graphql-request

- 167 -

https://learn.microsoft.com/de-de/aspnet/core/security/authentication/mfa?view=aspnetcore-8.0
https://learn.microsoft.com/de-de/aspnet/core/security/authentication/mfa?view=aspnetcore-8.0
https://rublon.com/blog/hotp-totp-difference/
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/NetServices/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/NetServices/Introduction.html
https://www.npmjs.com/package/graphql-request

	Declaration of Independence
	Documentation of the Diploma Thesis
	Abstract
	Introduction
	Problem Statement
	Solution

	Functionality
	Functions
	Functionality on Different Operating Systems

	Applications
	iOS
	macOS
	Android
	Windows
	Web - Dashboard

	Architecture
	Selected Technologies
	WinUI
	Windows App SDK
	SwiftUI
	Jetpack Compose
	SvelteKit
	GraphQL
	Bonjour

	Network Architecture
	Software Architecture
	iOS
	macOS
	Android
	Windows
	Server

	Implementation of Features
	Device Discovery
	Functionality
	On iOS and macOS
	On Android
	On Windows
	On the Server

	File Transfer
	Functionality
	On iOS and macOS
	On Android
	On Windows

	Clipboard
	Functionality
	On iOS and macOS
	On Android
	On Windows

	User Account
	Functionality
	On iOS and macOS
	On Android
	On Windows
	On the Web
	On the Server

	Background Execution
	On iOS
	On macOS
	On Android
	On Windows

	Encryption
	Functionality
	On iOS and macOS
	On Android
	On Windows
	On the Server

	Conclusion
	List of Figures
	List of Tables
	Bibliography

